Is there a compile-time way to detect / prevent duplicate values within a C/C++ enumeration?
The catch is that there are multiple items which are initialize
There are a couple ways to check this compile time, but they might not always work for you. Start by inserting a "marker" enum value right before MsgFoo2A.
typedef enum
{
MsgFoo1A = BASE1_VAL,
MsgFoo1B,
MsgFoo1C,
MsgFoo1D,
MsgFoo1E,
MARKER_1_DONT_USE, /* Don't use this value, but leave it here. */
MsgFoo2A = BASE2_VAL,
MsgFoo2B
} FOO;
Now we need a way to ensure that MARKER_1_DONT_USE < BASE2_VAL
at compile-time. There are two common techiques.
It is an error to declare an array with negative size. This looks a little ugly, but it works.
extern int IGNORE_ENUM_CHECK[MARKER_1_DONT_USE > BASE2_VAL ? -1 : 1];
Almost every compiler ever written will generate an error if MARKER_1_DONT_USE is greater than BASE_2_VAL. GCC spits out:
test.c:16: error: size of array ‘IGNORE_ENUM_CHECK’ is negative
If your compiler supports C11, you can use _Static_assert
. Support for C11 is not ubiquitous, but your compiler may support _Static_assert
anyway, especially since the corresponding feature in C++ is widely supported.
_Static_assert(MARKER_1_DONT_USE < BASE2_VAL, "Enum values overlap.");
GCC spits out the following message:
test.c:16:1: error: static assertion failed: "Enum values overlap."
_Static_assert(MARKER_1_DONT_USE < BASE2_VAL, "Enum values overlap.");
^
You could roll a more robust solution of defining enums using Boost.Preprocessor - wether its worth the time is a different matter.
If you are moving to C++ anyway, maybe the (proposed) Boost.Enum suits you (available via the Boost Vault).
Another approach might be to use something like gccxml (or more comfortably pygccxml) to identify candidates for manual inspection.
I didn't completely like any of the answers already posted here, but they gave me some ideas. The crucial technique is to rely on Ben Voight's answer of using a switch statement. If multiple cases in a switch share the same number, you'll get a compile error.
Most usefully to both myself and probably the original poster, this doesn't require any C++ features.
To clean things up, I used aaronps's answer at How can I avoid repeating myself when creating a C++ enum and a dependent data structure?
First, define this in some header someplace:
#define DEFINE_ENUM_VALUE(name, value) name=value,
#define CHECK_ENUM_VALUE(name, value) case name:
#define DEFINE_ENUM(enum_name, enum_values) \
typedef enum { enum_values(DEFINE_ENUM_VALUE) } enum_name;
#define CHECK_ENUM(enum_name, enum_values) \
void enum_name ## _test (void) { switch(0) { enum_values(CHECK_ENUM_VALUE); } }
Now, whenever you need to have an enumeration:
#define COLOR_VALUES(GEN) \
GEN(Red, 1) \
GEN(Green, 2) \
GEN(Blue, 2)
Finally, these lines are required to actually make the enumeration:
DEFINE_ENUM(Color, COLOR_VALUES)
CHECK_ENUM(Color, COLOR_VALUES)
DEFINE_ENUM
makes the enum data type itself. CHECK_ENUM
makes a test function that switches on all the enum values. The compiler will crash when compiling CHECK_ENUM
if you have duplicates.
Here's a solution using X macro without Boost. First define the X macro and its helper macros. I'm using this solution to portably make 2 overloads for the X macro so that you can define the enum with or without an explicit value. If you're using GCC or Clang then it can be made shorter
#define COUNT_X_ARGS_IMPL2(_1, _2, count, ...) count
#define COUNT_X_ARGS_IMPL(args) COUNT_X_ARGS_IMPL2 args
#define COUNT_X_ARGS(...) COUNT_X_ARGS_IMPL((__VA_ARGS__, 2, 1, 0))
/* Pick the right X macro to invoke. */
#define X_CHOOSE_HELPER2(count) X##count
#define X_CHOOSE_HELPER1(count) X_CHOOSE_HELPER2(count)
#define X_CHOOSE_HELPER(count) X_CHOOSE_HELPER1(count)
/* The actual macro. */
#define X_GLUE(x, y) x y
#define X(...) X_GLUE(X_CHOOSE_HELPER(COUNT_X_ARGS(__VA_ARGS__)), (__VA_ARGS__))
Then define the macro and check it
#define BASE1_VAL (5)
#define BASE2_VAL (7)
// Enum values
#define MY_ENUM \
X(MsgFoo1A, BASE1_VAL) \
X(MsgFoo1B) \
X(MsgFoo1C) \
X(MsgFoo1D) \
X(MsgFoo1E) \
X(MsgFoo2A, BASE2_VAL) \
X(MsgFoo2B)
// Define the enum
#define X1(enum_name) enum_name,
#define X2(enum_name, enum_value) enum_name = enum_value,
enum foo
{
MY_ENUM
};
#undef X1
#undef X2
// Check duplicates
#define X1(enum_name) case enum_name: break;
#define X2(enum_name, enum_value) case enum_name: break;
static void check_enum_duplicate()
{
switch(0)
{
MY_ENUM
}
}
#undef X1
#undef X2
Use it
int main()
{
// Do something with the whole enum
#define X1(enum_name) printf("%s = %d\n", #enum_name, enum_name);
#define X2(enum_name, enum_value) printf("%s = %d\n", #enum_name, enum_value);
// Print the whole enum
MY_ENUM
#undef X1
#undef X2
}
I don't know of anything that will automatically check all enum members, but if you want to check that future changes to the initializers (or the macros they rely on) don't cause collisions:
switch (0) {
case MsgFoo1A: break;
case MsgFoo1B: break;
case MsgFoo1C: break;
case MsgFoo1D: break;
case MsgFoo1E: break;
case MsgFoo2A: break;
case MsgFoo2B: break;
}
will cause a compiler error if any of the integral values is reused, and most compilers will even tell you what value (the numeric value) was a problem.
I didn't see "pretty" in your requirements, so I submit this solution implemented using the Boost Preprocessor library.
As an up-front disclaimer, I haven't used Boost.Preprocessor a whole lot and I've only tested this with the test cases presented here, so there could be bugs, and there may be an easier, cleaner way to do this. I certainly welcome comments, corrections, suggestions, insults, etc.
Here we go:
#include <boost/preprocessor.hpp>
#define EXPAND_ENUM_VALUE(r, data, i, elem) \
BOOST_PP_SEQ_ELEM(0, elem) \
BOOST_PP_IIF( \
BOOST_PP_EQUAL(BOOST_PP_SEQ_SIZE(elem), 2), \
= BOOST_PP_SEQ_ELEM(1, elem), \
BOOST_PP_EMPTY()) \
BOOST_PP_COMMA_IF(BOOST_PP_NOT_EQUAL(data, BOOST_PP_ADD(i, 1)))
#define ADD_CASE_FOR_ENUM_VALUE(r, data, elem) \
case BOOST_PP_SEQ_ELEM(0, elem) : break;
#define DEFINE_UNIQUE_ENUM(name, values) \
enum name \
{ \
BOOST_PP_SEQ_FOR_EACH_I(EXPAND_ENUM_VALUE, \
BOOST_PP_SEQ_SIZE(values), values) \
}; \
\
namespace detail \
{ \
void UniqueEnumSanityCheck##name() \
{ \
switch (name()) \
{ \
BOOST_PP_SEQ_FOR_EACH(ADD_CASE_FOR_ENUM_VALUE, name, values) \
} \
} \
}
We can then use it like so:
DEFINE_UNIQUE_ENUM(DayOfWeek, ((Monday) (1))
((Tuesday) (2))
((Wednesday) )
((Thursday) (4)))
The enumerator value is optional; this code generates an enumeration equivalent to:
enum DayOfWeek
{
Monday = 1,
Tuesday = 2,
Wednesday,
Thursday = 4
};
It also generates a sanity-check function that contains a switch statement as described in Ben Voigt's answer. If we change the enumeration declaration such that we have non-unique enumerator values, e.g.,
DEFINE_UNIQUE_ENUM(DayOfWeek, ((Monday) (1))
((Tuesday) (2))
((Wednesday) )
((Thursday) (1)))
it will not compile (Visual C++ reports the expected error C2196: case value '1' already used).
Thanks also to Matthieu M., whose answer to another question got me interested in the Boost Preprocessor library.