I have a df made by almost 50,000 rows spread in 15 different IDs (every ID has thousands of observations). df looks like:
ID Year Temp ph
1
mydata1 is your original data(not tested)
mydata2<- split(mydata1,mydata1$ID)
names(mydata2)<-paste0("mydata2",1:length(levels(ID)))
mysample<-Map(function(x) x[sample((1:nrow(x)),size=500,replace=FALSE),], mydata2)
library(plyr)# for rbinding the mysample
ldply(mysample)
Here is one approach in base R.
First, the prerequisite sample data to work with:
set.seed(1)
mydf <- data.frame(ID = rep(1:3, each = 5), matrix(rnorm(45), ncol = 3))
mydf
# ID X1 X2 X3
# 1 1 -0.6264538 -0.04493361 1.35867955
# 2 1 0.1836433 -0.01619026 -0.10278773
# 3 1 -0.8356286 0.94383621 0.38767161
# 4 1 1.5952808 0.82122120 -0.05380504
# 5 1 0.3295078 0.59390132 -1.37705956
# 6 2 -0.8204684 0.91897737 -0.41499456
# 7 2 0.4874291 0.78213630 -0.39428995
# 8 2 0.7383247 0.07456498 -0.05931340
# 9 2 0.5757814 -1.98935170 1.10002537
# 10 2 -0.3053884 0.61982575 0.76317575
# 11 3 1.5117812 -0.05612874 -0.16452360
# 12 3 0.3898432 -0.15579551 -0.25336168
# 13 3 -0.6212406 -1.47075238 0.69696338
# 14 3 -2.2146999 -0.47815006 0.55666320
# 15 3 1.1249309 0.41794156 -0.68875569
Second, the sampling:
do.call(rbind,
lapply(split(mydf, mydf$ID),
function(x) x[sample(nrow(x), 3), ]))
# ID X1 X2 X3
# 1.2 1 0.1836433 -0.01619026 -0.1027877
# 1.1 1 -0.6264538 -0.04493361 1.3586796
# 1.5 1 0.3295078 0.59390132 -1.3770596
# 2.10 2 -0.3053884 0.61982575 0.7631757
# 2.9 2 0.5757814 -1.98935170 1.1000254
# 2.8 2 0.7383247 0.07456498 -0.0593134
# 3.13 3 -0.6212406 -1.47075238 0.6969634
# 3.12 3 0.3898432 -0.15579551 -0.2533617
# 3.15 3 1.1249309 0.41794156 -0.6887557
There is also strata
from the sampling
package, which is convenient when you want to sample different sizes from each group:
# install.packages("sampling")
library(sampling)
set.seed(1)
x <- strata(mydf, "ID", size = c(2, 3, 2), method = "srswor")
getdata(mydf, x)
# X1 X2 X3 ID ID_unit Prob Stratum
# 2 0.1836433 -0.01619026 -0.1027877 1 2 0.4 1
# 5 0.3295078 0.59390132 -1.3770596 1 5 0.4 1
# 6 -0.8204684 0.91897737 -0.4149946 2 6 0.6 2
# 8 0.7383247 0.07456498 -0.0593134 2 8 0.6 2
# 9 0.5757814 -1.98935170 1.1000254 2 9 0.6 2
# 14 -2.2146999 -0.47815006 0.5566632 3 14 0.4 3
# 15 1.1249309 0.41794156 -0.6887557 3 15 0.4 3