I have a data set that looks like this:
shop_id,item_id,time,value
150,1,2015-07-10,3
150,1,2015-07-11,5
150,1,2015-07-13,2
150,2,2015-07-10,15
150,2,2015-07
You can use data.table
from R
. Assuming that 'time' column is of 'Date' class,
library(data.table)#v1.9.5+
DT1 <- setDT(df1)[, list(time=seq(min(time), max(time), by ='day')),
by =.(shop_id, item_id)]
setkeyv(df1, names(df1)[1:3])[DT1][is.na(value), value:=0]
# shop_id item_id time value
#1: 150 1 2015-07-10 3
#2: 150 1 2015-07-11 5
#3: 150 1 2015-07-12 0
#4: 150 1 2015-07-13 2
#5: 150 2 2015-07-10 15
#6: 150 2 2015-07-11 0
#7: 150 2 2015-07-12 12
In the devel version, you can also do this without setting the 'key'. Instructions to install the devel version are here
df1[DT1, on =c('shop_id', 'item_id', 'time')][is.na(value), value:=0]
# shop_id item_id time value
#1: 150 1 2015-07-10 3
#2: 150 1 2015-07-11 5
#3: 150 1 2015-07-12 0
#4: 150 1 2015-07-13 2
#5: 150 2 2015-07-10 15
#6: 150 2 2015-07-11 0
#7: 150 2 2015-07-12 12
Or as @Arun suggested, a more efficient option would be
DT1[, value := 0L][df1, value := i.value, on = c('shop_id', 'item_id', 'time')]
DT1
This is a Sql based solution
First you need a dates
table
Date table query. Note this will create a physical table in your database.
;with cte as
(
select cast('2000-01-01' as datetime) as Dates -- Start date
union all
select dateadd(MM,1,Dates)
from cte
where Dates < '2099-12-01' -- End date
)
select *
INTO Date_table
from CTE
Then you need to left outer join
your table with Date_table
to get the missing dates.
SELECT A.shop_id,
A.item_id,
DT.dates,
Isnull(Y.value, 0)
FROM date_table DT
CROSS JOIN(SELECT DISTINCT shop_id,
item_id
FROM yourtable) A
LEFT OUTER JOIN yourtable Y
ON t.[time] = DT.dates
AND A.shop_id = Y.shop_id
AND A.item_id = Y.item_id
Here's a solution with fill_by_value
from padr
:
library(dplyr)
library(tidyr)
library(padr)
df %>%
mutate(time = as.Date(time)) %>%
group_by(item_id) %>%
pad() %>% # from padr
fill(shop_id) %>% # from tidyr
fill_by_value(value) # from padr
Result:
# A tibble: 7 x 4
# Groups: item_id [2]
shop_id item_id time value
<int> <int> <date> <dbl>
1 150 1 2015-07-10 3
2 150 1 2015-07-11 5
3 150 1 2015-07-12 0
4 150 1 2015-07-13 2
5 150 2 2015-07-10 15
6 150 2 2015-07-11 0
7 150 2 2015-07-12 12
Data:
df = read.table(text = "shop_id,item_id,time,value
150,1,2015-07-10,3
150,1,2015-07-11,5
150,1,2015-07-13,2
150,2,2015-07-10,15
150,2,2015-07-12,12", header = TRUE, sep = ",")