Compute fast log base 2 ceiling

前端 未结 14 590
栀梦
栀梦 2020-11-28 11:35

What is a fast way to compute the (long int) ceiling(log_2(i)), where the input and output are 64-bit integers? Solutions for signed or unsigned integers are ac

相关标签:
14条回答
  • 2020-11-28 12:15

    The following code snippet is a safe and portable way to extend plain-C methods, such as @dgobbi's, to use compiler intrinsics when compiled using supporting compilers (Clang). Placing this at the top of the method will cause the method to use the builtin when it is available. When the builtin is unavailable the method will fall back to the standard C code.

    #ifndef __has_builtin
    #define __has_builtin(x) 0
    #endif
    
    #if __has_builtin(__builtin_clzll) //use compiler if possible
      return ((sizeof(unsigned long long) * 8 - 1) - __builtin_clzll(x)) + (!!(x & (x - 1)));
    #endif
    
    0 讨论(0)
  • 2020-11-28 12:27

    This algorithm has already been posted, but the following implementation is very compact and should optimize into branch-free code.

    int ceil_log2(unsigned long long x)
    {
      static const unsigned long long t[6] = {
        0xFFFFFFFF00000000ull,
        0x00000000FFFF0000ull,
        0x000000000000FF00ull,
        0x00000000000000F0ull,
        0x000000000000000Cull,
        0x0000000000000002ull
      };
    
      int y = (((x & (x - 1)) == 0) ? 0 : 1);
      int j = 32;
      int i;
    
      for (i = 0; i < 6; i++) {
        int k = (((x & t[i]) == 0) ? 0 : j);
        y += k;
        x >>= k;
        j >>= 1;
      }
    
      return y;
    }
    
    
    #include <stdio.h>
    #include <stdlib.h>
    
    int main(int argc, char *argv[])
    {
      printf("%d\n", ceil_log2(atol(argv[1])));
    
      return 0;
    }
    
    0 讨论(0)
  • 2020-11-28 12:31

    Using the gcc builtins mentioned by @egosys you can build some useful macros. For a quick and rough floor(log2(x)) calculation you can use:

    #define FAST_LOG2(x) (sizeof(unsigned long)*8 - 1 - __builtin_clzl((unsigned long)(x)))
    

    For a similar ceil(log2(x)), use:

    #define FAST_LOG2_UP(x) (((x) - (1 << FAST_LOG2(x))) ? FAST_LOG2(x) + 1 : FAST_LOG2(x))
    

    The latter can be further optimized using more gcc peculiarities to avoid the double call to the builtin, but I'm not sure you need it here.

    0 讨论(0)
  • 2020-11-28 12:33

    I have benchmarked several implementations of a 64 bit "highest bit". The most "branch free" code is not in fact the fastest.

    This is my highest-bit.c source file:

    int highest_bit_unrolled(unsigned long long n)
    {
      if (n & 0xFFFFFFFF00000000) {
        if (n & 0xFFFF000000000000) {
          if (n & 0xFF00000000000000) {
            if (n & 0xF000000000000000) {
              if (n & 0xC000000000000000)
                return (n & 0x8000000000000000) ? 64 : 63;
              else
                return (n & 0x2000000000000000) ? 62 : 61;
            } else {
              if (n & 0x0C00000000000000)
                return (n & 0x0800000000000000) ? 60 : 59;
              else
                return (n & 0x0200000000000000) ? 58 : 57;
            }
          } else {
            if (n & 0x00F0000000000000) {
              if (n & 0x00C0000000000000)
                return (n & 0x0080000000000000) ? 56 : 55;
              else
                return (n & 0x0020000000000000) ? 54 : 53;
            } else {
              if (n & 0x000C000000000000)
                return (n & 0x0008000000000000) ? 52 : 51;
              else
                return (n & 0x0002000000000000) ? 50 : 49;
            }
          }
        } else {
          if (n & 0x0000FF0000000000) {
            if (n & 0x0000F00000000000) {
              if (n & 0x0000C00000000000)
                return (n & 0x0000800000000000) ? 48 : 47;
              else
                return (n & 0x0000200000000000) ? 46 : 45;
            } else {
              if (n & 0x00000C0000000000)
                return (n & 0x0000080000000000) ? 44 : 43;
              else
                return (n & 0x0000020000000000) ? 42 : 41;
            }
          } else {
            if (n & 0x000000F000000000) {
              if (n & 0x000000C000000000)
                return (n & 0x0000008000000000) ? 40 : 39;
              else
                return (n & 0x0000002000000000) ? 38 : 37;
            } else {
              if (n & 0x0000000C00000000)
                return (n & 0x0000000800000000) ? 36 : 35;
              else
                return (n & 0x0000000200000000) ? 34 : 33;
            }
          }
        }
      } else {
        if (n & 0x00000000FFFF0000) {
          if (n & 0x00000000FF000000) {
            if (n & 0x00000000F0000000) {
              if (n & 0x00000000C0000000)
                return (n & 0x0000000080000000) ? 32 : 31;
              else
                return (n & 0x0000000020000000) ? 30 : 29;
            } else {
              if (n & 0x000000000C000000)
                return (n & 0x0000000008000000) ? 28 : 27;
              else
                return (n & 0x0000000002000000) ? 26 : 25;
            }
          } else {
            if (n & 0x0000000000F00000) {
              if (n & 0x0000000000C00000)
                return (n & 0x0000000000800000) ? 24 : 23;
              else
                return (n & 0x0000000000200000) ? 22 : 21;
            } else {
              if (n & 0x00000000000C0000)
                return (n & 0x0000000000080000) ? 20 : 19;
              else
                return (n & 0x0000000000020000) ? 18 : 17;
            }
          }
        } else {
          if (n & 0x000000000000FF00) {
            if (n & 0x000000000000F000) {
              if (n & 0x000000000000C000)
                return (n & 0x0000000000008000) ? 16 : 15;
              else
                return (n & 0x0000000000002000) ? 14 : 13;
            } else {
              if (n & 0x0000000000000C00)
                return (n & 0x0000000000000800) ? 12 : 11;
              else
                return (n & 0x0000000000000200) ? 10 : 9;
            }
          } else {
            if (n & 0x00000000000000F0) {
              if (n & 0x00000000000000C0)
                return (n & 0x0000000000000080) ? 8 : 7;
              else
                return (n & 0x0000000000000020) ? 6 : 5;
            } else {
              if (n & 0x000000000000000C)
                return (n & 0x0000000000000008) ? 4 : 3;
              else
                return (n & 0x0000000000000002) ? 2 : (n ? 1 : 0);
            }
          }
        }
      }
    }
    
    int highest_bit_bs(unsigned long long n)
    {
      const unsigned long long mask[] = {
        0x000000007FFFFFFF,
        0x000000000000FFFF,
        0x00000000000000FF,
        0x000000000000000F,
        0x0000000000000003,
        0x0000000000000001
      };
      int hi = 64;
      int lo = 0;
      int i = 0;
    
      if (n == 0)
        return 0;
    
      for (i = 0; i < sizeof mask / sizeof mask[0]; i++) {
        int mi = lo + (hi - lo) / 2;
    
        if ((n >> mi) != 0)
          lo = mi;
        else if ((n & (mask[i] << lo)) != 0)
          hi = mi;
      }
    
      return lo + 1;
    }
    
    int highest_bit_shift(unsigned long long n)
    {
      int i = 0;
      for (; n; n >>= 1, i++)
        ; /* empty */
      return i;
    }
    
    static int count_ones(unsigned long long d)
    {
      d = ((d & 0xAAAAAAAAAAAAAAAA) >>  1) + (d & 0x5555555555555555);
      d = ((d & 0xCCCCCCCCCCCCCCCC) >>  2) + (d & 0x3333333333333333);
      d = ((d & 0xF0F0F0F0F0F0F0F0) >>  4) + (d & 0x0F0F0F0F0F0F0F0F);
      d = ((d & 0xFF00FF00FF00FF00) >>  8) + (d & 0x00FF00FF00FF00FF);
      d = ((d & 0xFFFF0000FFFF0000) >> 16) + (d & 0x0000FFFF0000FFFF);
      d = ((d & 0xFFFFFFFF00000000) >> 32) + (d & 0x00000000FFFFFFFF);
      return d;
    }
    
    int highest_bit_parallel(unsigned long long n)
    {
      n |= n >> 1;
      n |= n >> 2;
      n |= n >> 4;
      n |= n >> 8;
      n |= n >> 16;
      n |= n >> 32;
      return count_ones(n);
    }
    
    int highest_bit_so(unsigned long long x)
    {
      static const unsigned long long t[6] = {
        0xFFFFFFFF00000000ull,
        0x00000000FFFF0000ull,
        0x000000000000FF00ull,
        0x00000000000000F0ull,
        0x000000000000000Cull,
        0x0000000000000002ull
      };
    
      int y = (((x & (x - 1)) == 0) ? 0 : 1);
      int j = 32;
      int i;
    
      for (i = 0; i < 6; i++) {
        int k = (((x & t[i]) == 0) ? 0 : j);
        y += k;
        x >>= k;
        j >>= 1;
      }
    
      return y;
    }
    
    int highest_bit_so2(unsigned long long value)
    {
      int pos = 0;
      if (value & (value - 1ULL))
      {
        pos = 1;
      }
      if (value & 0xFFFFFFFF00000000ULL)
      {
        pos += 32;
        value = value >> 32;
      }
      if (value & 0x00000000FFFF0000ULL)
      {
        pos += 16;
        value = value >> 16;
      }
      if (value & 0x000000000000FF00ULL)
      {
        pos += 8;
        value = value >> 8;
      }
      if (value & 0x00000000000000F0ULL)
      {
        pos += 4;
        value = value >> 4;
      }
      if (value & 0x000000000000000CULL)
      {
        pos += 2;
        value = value >> 2;
      }
      if (value & 0x0000000000000002ULL)
      {
        pos += 1;
        value = value >> 1;
      }
      return pos;
    }
    

    This is highest-bit.h:

    int highest_bit_unrolled(unsigned long long n);
    int highest_bit_bs(unsigned long long n);
    int highest_bit_shift(unsigned long long n);
    int highest_bit_parallel(unsigned long long n);
    int highest_bit_so(unsigned long long n);
    int highest_bit_so2(unsigned long long n);
    

    And the main program (sorry about all the copy and paste):

    #include <stdlib.h>
    #include <stdio.h>
    #include <time.h>
    #include "highest-bit.h"
    
    double timedelta(clock_t start, clock_t end)
    {
      return (end - start)*1.0/CLOCKS_PER_SEC;
    }
    
    int main(int argc, char **argv)
    {
      int i;
      volatile unsigned long long v;
      clock_t start, end;
    
      start = clock();
    
      for (i = 0; i < 10000000; i++) {
        for (v = 0x8000000000000000; v; v >>= 1)
          highest_bit_unrolled(v);
      }
    
      end = clock();
    
      printf("highest_bit_unrolled = %6.3fs\n", timedelta(start, end));
    
      start = clock();
    
      for (i = 0; i < 10000000; i++) {
        for (v = 0x8000000000000000; v; v >>= 1)
          highest_bit_parallel(v);
      }
    
      end = clock();
    
      printf("highest_bit_parallel = %6.3fs\n", timedelta(start, end));
    
      start = clock();
    
      for (i = 0; i < 10000000; i++) {
        for (v = 0x8000000000000000; v; v >>= 1)
          highest_bit_bs(v);
      }
    
      end = clock();
    
      printf("highest_bit_bs = %6.3fs\n", timedelta(start, end));
    
      start = clock();
    
      for (i = 0; i < 10000000; i++) {
        for (v = 0x8000000000000000; v; v >>= 1)
          highest_bit_shift(v);
      }
    
      end = clock();
    
      printf("highest_bit_shift = %6.3fs\n", timedelta(start, end));
    
      start = clock();
    
      for (i = 0; i < 10000000; i++) {
        for (v = 0x8000000000000000; v; v >>= 1)
          highest_bit_so(v);
      }
    
      end = clock();
    
      printf("highest_bit_so = %6.3fs\n", timedelta(start, end));
    
      start = clock();
    
      for (i = 0; i < 10000000; i++) {
        for (v = 0x8000000000000000; v; v >>= 1)
          highest_bit_so2(v);
      }
    
      end = clock();
    
      printf("highest_bit_so2 = %6.3fs\n", timedelta(start, end));
    
      return 0;
    }
    

    I've tried this various Intel x86 boxes, old and new.

    The highest_bit_unrolled (unrolled binary search) is consistently significantly faster than highest_bit_parallel (branch-free bit ops). This is faster than than highest_bit_bs (binary search loop), and that in turn is faster than highest_bit_shift (naive shift and count loop).

    highest_bit_unrolled is also faster than the one in the accepted SO answer (highest_bit_so) and also one given in another answer (highest_bit_so2).

    The benchmark cycles through a one-bit mask that covers successive bits. This is to try to defeat branch prediction in the unrolled binary search, which is realistic: in a real world program, the input cases are unlikely to exhibit locality of bit position.

    Here are results on an old Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz:

    $ ./highest-bit
    highest_bit_unrolled =  6.090s
    highest_bit_parallel =  9.260s
    highest_bit_bs = 19.910s
    highest_bit_shift = 21.130s
    highest_bit_so =  8.230s
    highest_bit_so2 =  6.960s
    

    On a newer model Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz:

    highest_bit_unrolled =  1.555s
    highest_bit_parallel =  3.420s
    highest_bit_bs =  6.486s
    highest_bit_shift =  9.505s
    highest_bit_so =  4.127s
    highest_bit_so2 =  1.645s
    

    On the newer hardware, highest_bit_so2 comes closer to highest_bit_unrolled on the newer hardware. The order is not quite the same; now highest_bit_so really falls behind, and is slower than highest_bit_parallel.

    The fastest one, highest_bit_unrolled contains the most code with the most branches. Every single return value reached by a different set of conditions with its own dedicated piece of code.

    The intuition of "avoid all branches" (due to worries about branch mis-predictions) is not always right. Modern (and even not-so-modern any more) processors contain considerable cunning in order not to be hampered by branching.


    P.S. the highest_bit_unrolled was introduced in the TXR language in December 2011 (with mistakes, since debugged).

    Recently, I started wondering whether some nicer, more compact code without branches might not be faster.

    I'm somewhat surprised by the results.

    Arguably, the code should really be #ifdef-ing for GNU C and using some compiler primitives, but as far as portability goes, that version stays.

    0 讨论(0)
  • 2020-11-28 12:34

    The naive linear search may be an option for evenly distributed integers, since it needs slightly less than 2 comparisons on average (for any integer size).

    /* between 1 and 64 comparisons, ~2 on average */
    #define u64_size(c) (              \
        0x8000000000000000 < (c) ? 64  \
      : 0x4000000000000000 < (c) ? 63  \
      : 0x2000000000000000 < (c) ? 62  \
      : 0x1000000000000000 < (c) ? 61  \
    ...
      : 0x0000000000000002 < (c) ?  2  \
      : 0x0000000000000001 < (c) ?  1  \
      :                             0  \
    )
    
    0 讨论(0)
  • 2020-11-28 12:35

    Finding the log base 2 of an integer (64-bit or any other bit) with integer output is equivalent to finding the most significant bit that is set. Why? Because log base 2 is how many times you can divide the number by 2 to reach 1.

    One way to find the MSB that's set is to simply bitshift to the right by 1 each time until you have 0. Another more efficient way is to do some kind of binary search via bitmasks.

    The ceil part is easily worked out by checking if any other bits are set other than the MSB.

    0 讨论(0)
提交回复
热议问题