Representing voxels with matplotlib

后端 未结 2 2108
灰色年华
灰色年华 2020-11-28 10:40

In Python, given a N_1 x N_2 x N_3 matrix containing either 0s or 1s, I would be looking for a way to display the data in 3D as a N_1 x N_2 x N_3 v

相关标签:
2条回答
  • 2020-11-28 11:19

    A. Using voxels

    From matplotlib 2.1 on, there is a Axes3D.voxels function available, which pretty much does what's asked for here. It is however not very easily customized to different sizes, positions or colors.

    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    import matplotlib.pyplot as plt
    N1 = 10
    N2 = 10
    N3 = 10
    ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_aspect('equal')
    
    ax.voxels(ma, edgecolor="k")
    
    plt.show()
    

    To place the voxels at different positions, see How to scale the voxel-dimensions with Matplotlib?.

    B. Using Poly3DCollection

    Manually creating the voxels may make the process a little bit more transparent and allows for any kind of customizations of the sizes, positions and colors of the voxels. Another advantage is that here we create a single Poly3DCollection instead of many, making this solution faster than the inbuild voxels.

    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d.art3d import Poly3DCollection
    
    def cuboid_data(o, size=(1,1,1)):
        X = [[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]],
             [[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]],
             [[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]],
             [[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]],
             [[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]],
             [[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]]]
        X = np.array(X).astype(float)
        for i in range(3):
            X[:,:,i] *= size[i]
        X += np.array(o)
        return X
    
    def plotCubeAt(positions,sizes=None,colors=None, **kwargs):
        if not isinstance(colors,(list,np.ndarray)): colors=["C0"]*len(positions)
        if not isinstance(sizes,(list,np.ndarray)): sizes=[(1,1,1)]*len(positions)
        g = []
        for p,s,c in zip(positions,sizes,colors):
            g.append( cuboid_data(p, size=s) )
        return Poly3DCollection(np.concatenate(g),  
                                facecolors=np.repeat(colors,6, axis=0), **kwargs)
    
    N1 = 10
    N2 = 10
    N3 = 10
    ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])
    x,y,z = np.indices((N1,N2,N3))-.5
    positions = np.c_[x[ma==1],y[ma==1],z[ma==1]]
    colors= np.random.rand(len(positions),3)
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_aspect('equal')
    
    pc = plotCubeAt(positions, colors=colors,edgecolor="k")
    ax.add_collection3d(pc)
    
    ax.set_xlim([0,10])
    ax.set_ylim([0,10])
    ax.set_zlim([0,10])
    #plotMatrix(ax, ma)
    #ax.voxels(ma, edgecolor="k")
    
    plt.show()
    

    C. Using plot_surface

    Adapting a code from this answer (which is partly based on this answer), one can easily plot cuboids as surface plots.

    One then can iterate over the input array and upon finding a 1 plot a cuboid at the position corresponding to the array indices.

    The advantage here is that you get nice shading on the surfaces, adding to the 3D effect. A disadvantage may be that the cubes may not behave physical in some cases, e.g. they might overlap for certain viewing angles.

    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    import matplotlib.pyplot as plt
    
    def cuboid_data(pos, size=(1,1,1)):
        # code taken from
        # https://stackoverflow.com/a/35978146/4124317
        # suppose axis direction: x: to left; y: to inside; z: to upper
        # get the (left, outside, bottom) point
        o = [a - b / 2 for a, b in zip(pos, size)]
        # get the length, width, and height
        l, w, h = size
        x = [[o[0], o[0] + l, o[0] + l, o[0], o[0]],  
             [o[0], o[0] + l, o[0] + l, o[0], o[0]],  
             [o[0], o[0] + l, o[0] + l, o[0], o[0]],  
             [o[0], o[0] + l, o[0] + l, o[0], o[0]]]  
        y = [[o[1], o[1], o[1] + w, o[1] + w, o[1]],  
             [o[1], o[1], o[1] + w, o[1] + w, o[1]],  
             [o[1], o[1], o[1], o[1], o[1]],          
             [o[1] + w, o[1] + w, o[1] + w, o[1] + w, o[1] + w]]   
        z = [[o[2], o[2], o[2], o[2], o[2]],                       
             [o[2] + h, o[2] + h, o[2] + h, o[2] + h, o[2] + h],   
             [o[2], o[2], o[2] + h, o[2] + h, o[2]],               
             [o[2], o[2], o[2] + h, o[2] + h, o[2]]]               
        return np.array(x), np.array(y), np.array(z)
    
    def plotCubeAt(pos=(0,0,0),ax=None):
        # Plotting a cube element at position pos
        if ax !=None:
            X, Y, Z = cuboid_data( pos )
            ax.plot_surface(X, Y, Z, color='b', rstride=1, cstride=1, alpha=1)
    
    def plotMatrix(ax, matrix):
        # plot a Matrix 
        for i in range(matrix.shape[0]):
            for j in range(matrix.shape[1]):
                for k in range(matrix.shape[2]):
                    if matrix[i,j,k] == 1:
                        # to have the 
                        plotCubeAt(pos=(i-0.5,j-0.5,k-0.5), ax=ax)            
    
    N1 = 10
    N2 = 10
    N3 = 10
    ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_aspect('equal')
    
    plotMatrix(ax, ma)
    
    plt.show()
    

    0 讨论(0)
  • 2020-11-28 11:34

    The upcomming matplotlib version 2.1 does have a function and examples for 3D voxels.

    If you use anaconda you can install it through the conda-forge channel.

    conda install -c conda-forge matplotlib
    
    0 讨论(0)
提交回复
热议问题