After reading:
I believe these details are mainly part of the implementation of Swift's IRGen – I don't think you'll find any friendly structs in the source showing you the full structure of various Swift function values. Therefore if you want to do some digging into this, I would recommend examining the IR emitted by the compiler.
You can do this by running the command:
xcrun swiftc -emit-ir main.swift | xcrun swift-demangle > main.irgen
which will emit the IR (with demangled symbols) for a -Onone build. You can find the documentation for LLVM IR here.
The following is some interesting stuff that I've been able to learn from going through the IR myself in a Swift 3.1 build. Note that this is all subject to change in future Swift versions (at least until Swift is ABI stable). It goes without saying that the code examples given below are only for demonstration purposes; and shouldn't ever be used in actual production code.
At a very basic level, function values in Swift are simple things – they're defined in the IR as:
%swift.function = type { i8*, %swift.refcounted* }
which is the raw function pointer i8*
, along with a pointer to its context %swift.refcounted*
, where %swift.refcounted
is defined as:
%swift.refcounted = type { %swift.type*, i32, i32 }
which is the structure of a simple reference-counted object, containing a pointer to the object's metadata, along with two 32 bit values.
These two 32 bit values are used for the reference count of the object. Together , they can either represent (as of Swift 4):
or
For further reading on the internals of Swift reference counting, Mike Ash has a great blog post on the subject.
The context of a function usually adds extra values onto the end of this %swift.refcounted
structure. These values are dynamic things that the function needs upon being called (such as any values that it has captured, or any parameters that it has been partially applied with). In quite a few cases, function values won't need a context, so the pointer to the context will simply be nil
.
When the function comes to be called, Swift will simply pass in the context as the last parameter. If the function doesn't have a context parameter, the calling convention appears to allow it to be safely passed anyway.
The storing of the function pointer along with the context pointer is called a thick function value,
and is how Swift usually stores function values of known type (as opposed to a thin function value which is just the function pointer).
So, this explains why MemoryLayout<(Int) -> Int>.size
returns 16 bytes – because it's made up of two pointers (each being a word in length, i.e 8 bytes on a 64 bit platform).
When thick function values are passed into function parameters (where those parameters are of non-generic type), Swift appears to pass the raw function pointer and context as separate parameters.
When a closure captures a value, this value will be put into a heap-allocated box (although the value itself can get stack-promoted in the case of a non-escaping closure – see later section). This box will be available to the function through the context object (the relevant IR).
For a closure that just captures a single value, Swift just makes the box itself the context of the function (no need for extra indirection). So you'll have a function value which looks like a ThickFunction<Box<T>>
from the following structures:
// The structure of a %swift.function.
struct ThickFunction<Context> {
// the raw function pointer
var ptr: UnsafeRawPointer
// the context of the function value – can be nil to indicate
// that the function has no context.
var context: UnsafePointer<Context>?
}
// The structure of a %swift.refcounted.
struct RefCounted {
// pointer to the metadata of the object
var type: UnsafeRawPointer
// the reference counting bits.
var refCountingA: UInt32
var refCountingB: UInt32
}
// The structure of a %swift.refcounted, with a value tacked onto the end.
// This is what captured values get wrapped in (on the heap).
struct Box<T> {
var ref: RefCounted
var value: T
}
In fact, we can actually verify this for ourselves by running the following:
// this wrapper is necessary so that the function doesn't get put through a reabstraction
// thunk when getting typed as a generic type T (such as with .initialize(to:))
struct VoidVoidFunction {
var f: () -> Void
}
func makeClosure() -> () -> Void {
var i = 5
return { i += 2 }
}
let f = VoidVoidFunction(f: makeClosure())
let ptr = UnsafeMutablePointer<VoidVoidFunction>.allocate(capacity: 1)
ptr.initialize(to: f)
let ctx = ptr.withMemoryRebound(to: ThickFunction<Box<Int>>.self, capacity: 1) {
$0.pointee.context! // force unwrap as we know the function has a context object.
}
print(ctx.pointee)
// Box<Int>(ref:
// RefCounted(type: 0x00000001002b86d0, refCountingA: 2, refCountingB: 2),
// value: 5
// )
f.f() // call the closure – increment the captured value.
print(ctx.pointee)
// Box<Int>(ref:
// RefCounted(type: 0x00000001002b86d0, refCountingA: 2, refCountingB: 2),
// value: 7
// )
ptr.deinitialize()
ptr.deallocate(capacity: 1)
We can see that by calling the function between printing out the value of the context object, we can observe the changing in value of the captured variable i
.
For multiple captured values, we need extra indirection, as the boxes cannot be stored directly as the given function's context, and may be captured by other closures. This is done by adding pointers to the boxes to the end of a %swift.refcounted
.
For example:
struct TwoCaptureContext<T, U> {
// reference counting header
var ref: RefCounted
// pointers to boxes with captured values...
var first: UnsafePointer<Box<T>>
var second: UnsafePointer<Box<U>>
}
func makeClosure() -> () -> Void {
var i = 5
var j = "foo"
return { i += 2; j += "b" }
}
let f = VoidVoidFunction(f: makeClosure())
let ptr = UnsafeMutablePointer<VoidVoidFunction>.allocate(capacity: 1)
ptr.initialize(to: f)
let ctx = ptr.withMemoryRebound(to:
ThickFunction<TwoCaptureContext<Int, String>>.self, capacity: 1) {
$0.pointee.context!.pointee
}
print(ctx.first.pointee.value, ctx.second.pointee.value) // 5 foo
f.f() // call the closure – mutate the captured values.
print(ctx.first.pointee.value, ctx.second.pointee.value) // 7 foob
ptr.deinitialize()
ptr.deallocate(capacity: 1)
You'll note that in the previous examples, we used a VoidVoidFunction
wrapper for our function values. This is because otherwise, when being passed into a parameter of generic type (such as UnsafeMutablePointer
's initialize(to:)
method), Swift will put a function value through some reabstraction thunks in order to unify its calling convention to one where the arguments and return are passed by reference, rather than value (the relevant IR).
But now our function value has a pointer to the thunk, rather than the actual function we want to call. So how does the thunk know which function to call? The answer is simple – Swift puts the function that we want to the thunk to call in the context itself, which will therefore look like this:
// the context object for a reabstraction thunk – contains an actual function to call.
struct ReabstractionThunkContext<Context> {
// the standard reference counting header
var ref: RefCounted
// the thick function value for the thunk to call
var function: ThickFunction<Context>
}
The first thunk that we go through has 3 parameters:
This first thunk just extracts the function value from the context, and then calls a second thunk, with 4 parameters:
This thunk now retrieves the arguments (if any) from the argument pointer, then calls the given function pointer with these arguments, along with its context. It then stores the return value (if any) at the address of the return pointer.
Like in the previous examples, we can test this like so:
func makeClosure() -> () -> Void {
var i = 5
return { i += 2 }
}
func printSingleCapturedValue<T>(t: T) {
let ptr = UnsafeMutablePointer<T>.allocate(capacity: 1)
ptr.initialize(to: t)
let ctx = ptr.withMemoryRebound(to:
ThickFunction<ReabstractionThunkContext<Box<Int>>>.self, capacity: 1) {
// get the context from the thunk function value, which we can
// then get the actual function value from, and therefore the actual
// context object.
$0.pointee.context!.pointee.function.context!
}
// print out captured value in the context object
print(ctx.pointee.value)
ptr.deinitialize()
ptr.deallocate(capacity: 1)
}
let closure = makeClosure()
printSingleCapturedValue(t: closure) // 5
closure()
printSingleCapturedValue(t: closure) // 7
When the compiler can determine that the capture of a given local variable doesn't escape the lifetime of the function it's declared in, it can optimise by promoting the value of that variable from the heap-allocated box to the stack (this is a guaranteed optimisation, and occurs in even -Onone). Then, the function's context object need only store a pointer to the given captured value on the stack, as it is guaranteed not to be needed after the function exits.
This can therefore be done when the closure(s) capturing the variable are known not to escape the lifetime of the function.
Generally, an escaping closure is one that either:
@escaping
, or is not of function type (note this includes composite types, such as optional function types).So, the following are examples where the capture of a given variable can be considered not to escape the lifetime of the function:
// the parameter is non-escaping, as is of function type and is not marked @escaping.
func nonEscaping(_ f: () -> Void) {
f()
}
func bar() -> String {
var str = ""
// c doesn't escape the lifetime of bar().
let c = {
str += "c called; "
}
c();
// immediately-evaluated closure obviously doesn't escape.
{ str += "immediately-evaluated closure called; " }()
// closure passed to non-escaping function parameter, so doesn't escape.
nonEscaping {
str += "closure passed to non-escaping parameter called."
}
return str
}
In this example, because str
is only ever captured by closures that are known not to escape the lifetime of the function bar()
, the compiler can optimise by storing the value of str
on the stack, with the context objects storing only a pointer to it (the relevant IR).
So, the context objects for each of the closures1 will look like Box<UnsafePointer<String>>
, with pointers to the string value on the stack. Although unfortunately, in a Schrödinger-like manner, attempting to observe this by allocating and re-binding a pointer (like before) triggers the compiler to treat the given closure as escaping – so we're once again looking at a Box<String>
for the context.
In order to deal with the disparity between context objects that hold pointer(s) to the captured values rather than holding the values in their own heap-allocated boxes – Swift creates specialised implementations of the closures that take pointers to the captured values as arguments.
Then, a thunk is created for each closure that simply takes in a given context object, extracts the pointer(s) to the captured values from it, and passes this onto the specialised implementation of the closure. Now, we can just have a pointer to this thunk along with our context object as the thick function value.
For multiple captured values that don't escape, the additional pointers are simply added onto the end of the box, i.e
struct TwoNonEscapingCaptureContext<T, U> {
// reference counting header
var ref: RefCounted
// pointers to captured values (on the stack)...
var first: UnsafePointer<T>
var second: UnsafePointer<U>
}
This optimisation of promoting the captured values from the heap to the stack can be especially beneficial in this case, as we're no longer having to allocate separate boxes for each value – such as was the case previously.
Furthermore it's worth noting that lots of cases with non-escaping closure capture can be optimised much more aggressively in -O builds with inlining, which can result in context objects being optimised away entirely.
1. Immediately-evaluated closures actually don't use a context object, the pointer(s) to the captured values are just passed directly to it upon calling.