import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
Setting the aspect ratio works for 2d plots:
ax = plt.axes(
As of matplotlib 3.3.0, Axes3D.set_box_aspect seems to be the recommended approach.
import numpy as np
import matplotlib.pyplot as plt
xs, ys, zs = ...
ax = plt.axes(projection='3d')
ax.set_box_aspect((np.ptp(xs), np.ptp(ys), np.ptp(zs))) # aspect ratio is 1:1:1 in data space
ax.plot(xs, ys, zs)
Looks like this feature has since been added so thought I'd add an answer for people who come by this thread in the future like I did:
fig = plt.figure(figsize=plt.figaspect(0.5)*1.5) #Adjusts the aspect ratio and enlarges the figure (text does not enlarge)
ax = fig.gca(projection='3d')
figaspect(0.5)
makes the figure twice as wide as it is tall. Then the *1.5
increases the size of the figure. The labels etc won't increase so this is a way to make the graph look less cluttered by the labels.
If you know the bounds you can also set the aspect ratio this way:
ax.auto_scale_xyz([minbound, maxbound], [minbound, maxbound], [minbound, maxbound])
My understanding is basically that this isn't implemented yet (see this bug in GitHub). I'm also hoping that it is implemented soon. See This link for a possible solution (I haven't tested it myself).
I didn't try all of these answers, but this kludge did it for me:
def axisEqual3D(ax):
extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz'])
sz = extents[:,1] - extents[:,0]
centers = np.mean(extents, axis=1)
maxsize = max(abs(sz))
r = maxsize/2
for ctr, dim in zip(centers, 'xyz'):
getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r)
If you know the bounds, eg. +-3 centered around (0,0,0), you can add invisible points like this:
import numpy as np
import pylab as pl
from mpl_toolkits.mplot3d import Axes3D
fig = pl.figure()
ax = fig.gca(projection='3d')
ax.set_aspect('equal')
MAX = 3
for direction in (-1, 1):
for point in np.diag(direction * MAX * np.array([1,1,1])):
ax.plot([point[0]], [point[1]], [point[2]], 'w')