I\'m trying to detect and fine-locate some objects in images from contours. The contours that I get often include some noise (maybe form the background, I don\'t know). The
This approach works only on points. You don't need to create masks for this.
The main idea is:
I get the following results. As you can see, it has some drawbacks for smooth defects (e.g. 7th image), but works pretty good for clearly visible defects. I don't know if this will solve your problem, but can be a starting point. In practice should be quite fast (you can surely optimize the code below, specially the removeFromContour
function). Also, the only parameter of this approach is the amount of the convexity defect, so it works well with both small and big defecting blobs.
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int ed2(const Point& lhs, const Point& rhs)
{
return (lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y);
}
vector<Point> removeFromContour(const vector<Point>& contour, const vector<int>& defectsIdx)
{
int minDist = INT_MAX;
int startIdx;
int endIdx;
// Find nearest defects
for (int i = 0; i < defectsIdx.size(); ++i)
{
for (int j = i + 1; j < defectsIdx.size(); ++j)
{
float dist = ed2(contour[defectsIdx[i]], contour[defectsIdx[j]]);
if (minDist > dist)
{
minDist = dist;
startIdx = defectsIdx[i];
endIdx = defectsIdx[j];
}
}
}
// Check if intervals are swapped
if (startIdx <= endIdx)
{
int len1 = endIdx - startIdx;
int len2 = contour.size() - endIdx + startIdx;
if (len2 < len1)
{
swap(startIdx, endIdx);
}
}
else
{
int len1 = startIdx - endIdx;
int len2 = contour.size() - startIdx + endIdx;
if (len1 < len2)
{
swap(startIdx, endIdx);
}
}
// Remove unwanted points
vector<Point> out;
if (startIdx <= endIdx)
{
out.insert(out.end(), contour.begin(), contour.begin() + startIdx);
out.insert(out.end(), contour.begin() + endIdx, contour.end());
}
else
{
out.insert(out.end(), contour.begin() + endIdx, contour.begin() + startIdx);
}
return out;
}
int main()
{
Mat1b img = imread("path_to_mask", IMREAD_GRAYSCALE);
Mat3b out;
cvtColor(img, out, COLOR_GRAY2BGR);
vector<vector<Point>> contours;
findContours(img.clone(), contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
vector<Point> pts = contours[0];
vector<int> hullIdx;
convexHull(pts, hullIdx, false);
vector<Vec4i> defects;
convexityDefects(pts, hullIdx, defects);
while (true)
{
// For debug
Mat3b dbg;
cvtColor(img, dbg, COLOR_GRAY2BGR);
vector<vector<Point>> tmp = {pts};
drawContours(dbg, tmp, 0, Scalar(255, 127, 0));
vector<int> defectsIdx;
for (const Vec4i& v : defects)
{
float depth = float(v[3]) / 256.f;
if (depth > 2) // filter defects by depth
{
// Defect found
defectsIdx.push_back(v[2]);
int startidx = v[0]; Point ptStart(pts[startidx]);
int endidx = v[1]; Point ptEnd(pts[endidx]);
int faridx = v[2]; Point ptFar(pts[faridx]);
line(dbg, ptStart, ptEnd, Scalar(255, 0, 0), 1);
line(dbg, ptStart, ptFar, Scalar(0, 255, 0), 1);
line(dbg, ptEnd, ptFar, Scalar(0, 0, 255), 1);
circle(dbg, ptFar, 4, Scalar(127, 127, 255), 2);
}
}
if (defectsIdx.size() < 2)
{
break;
}
// If I have more than two defects, remove the points between the two nearest defects
pts = removeFromContour(pts, defectsIdx);
convexHull(pts, hullIdx, false);
convexityDefects(pts, hullIdx, defects);
}
// Draw result contour
vector<vector<Point>> tmp = { pts };
drawContours(out, tmp, 0, Scalar(0, 0, 255), 1);
imshow("Result", out);
waitKey();
return 0;
}
UPDATE
Working on an approximated contour (e.g. using CHAIN_APPROX_SIMPLE
in findContours
) may be faster, but the length of contours must be computed using arcLength()
.
This is the snippet to replace in the swapping part of removeFromContour
:
// Check if intervals are swapped
if (startIdx <= endIdx)
{
//int len11 = endIdx - startIdx;
vector<Point> inside(contour.begin() + startIdx, contour.begin() + endIdx);
int len1 = (inside.empty()) ? 0 : arcLength(inside, false);
//int len22 = contour.size() - endIdx + startIdx;
vector<Point> outside1(contour.begin(), contour.begin() + startIdx);
vector<Point> outside2(contour.begin() + endIdx, contour.end());
int len2 = (outside1.empty() ? 0 : arcLength(outside1, false)) + (outside2.empty() ? 0 : arcLength(outside2, false));
if (len2 < len1)
{
swap(startIdx, endIdx);
}
}
else
{
//int len1 = startIdx - endIdx;
vector<Point> inside(contour.begin() + endIdx, contour.begin() + startIdx);
int len1 = (inside.empty()) ? 0 : arcLength(inside, false);
//int len2 = contour.size() - startIdx + endIdx;
vector<Point> outside1(contour.begin(), contour.begin() + endIdx);
vector<Point> outside2(contour.begin() + startIdx, contour.end());
int len2 = (outside1.empty() ? 0 : arcLength(outside1, false)) + (outside2.empty() ? 0 : arcLength(outside2, false));
if (len1 < len2)
{
swap(startIdx, endIdx);
}
}
I came up with the following approach for detecting the bounds of the rectangle/square. It works based on few assumptions: shape is rectangular or square, it is centered in the image, it is not tilted.
Median line and the projection for a top half of a sample image is shown below.
Resulting bounds and cropped regions for two samples:
The code is in Octave/Matlab, and I tested this on Octave (you need the image package to run this).
clear all
close all
im = double(imread('kTouF.png'));
[r, c] = size(im);
% top half
p = sum(im(1:int32(end/2), :), 1);
y1 = -median(p(find(p > 0))) + int32(r/2);
% bottom half
p = sum(im(int32(end/2):end, :), 1);
y2 = median(p(find(p > 0))) + int32(r/2);
% left half
p = sum(im(:, 1:int32(end/2)), 2);
x1 = -median(p(find(p > 0))) + int32(c/2);
% right half
p = sum(im(:, int32(end/2):end), 2);
x2 = median(p(find(p > 0))) + int32(c/2);
% crop the image using the bounds
rect = [x1 y1 x2-x1 y2-y1];
cr = imcrop(im, rect);
im2 = zeros(size(im));
im2(y1:y2, x1:x2) = cr;
figure,
axis equal
subplot(1, 2, 1)
imagesc(im)
hold on
plot([x1 x2 x2 x1 x1], [y1 y1 y2 y2 y1], 'g-')
hold off
subplot(1, 2, 2)
imagesc(im2)
As a starting point and assuming the defects are never too big relative to the object you are trying to recognize, you can try a simple erode+dilate strategy before using cv::matchShapes
as shown below.
int max = 40; // depending on expected object and defect size
cv::Mat img = cv::imread("example.png");
cv::Mat eroded, dilated;
cv::Mat element = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(max*2,max*2), cv::Point(max,max));
cv::erode(img, eroded, element);
cv::dilate(eroded, dilated, element);
cv::imshow("original", img);
cv::imshow("eroded", eroded);
cv::imshow("dilated", dilated);