Why is the output of the following program 84215045
?
int grid[110];
int main()
{
memset(grid, 5, 100 * sizeof(int));
printf(\"%d\", grid
Don't use memset.
You set each byte []
of the memory to the value of 5. Each int is 4 bytes long [5][5][5][5]
, which the compiler correctly interprets as 5*256*256*256 + 5*256*256 + 5*256 + 5 = 84215045. Instead, use a for loop, which also doesn't require sizeof(). In general, sizeof() means you're doing something the hard way.
for(int i=0; i<110; ++i)
grid[i] = 5;
memset
is about setting bytes, not values. One of the many ways to set array values in C++ is std::fill_n
:
std::fill_n(grid, 100, 5);
Well, the memset
writes bytes, with the selected value. Therefore an int will look something like this:
00000101 00000101 00000101 00000101
Which is then interpreted as 84215045.
You haven't actually said what you want your program to do.
Assuming that you want to set each of the first 100 elements of grid
to 5 (and ignoring the 100
vs. 110
discrepancy), just do this:
for (int i = 0; i < 100; i ++) {
grid[i] = 5;
}
I understand that you're concerned about speed, but your concern is probably misplaced. On the one hand, memset()
is likely to be optimized and therefore faster than a simple loop. On the other hand, the optimization is likely to consist of writing more than one byte at a time, which is what this loop does. On the other other hand, memset()
is a loop anyway; writing the loop explicitly rather than burying it in a function call doesn't change that. On the other other other hand, even if the loop is slow, it's not likely to matter; concentrate on writing clear code, and think about optimizing it if actual measurements indicate that there's a significant performance issue.
You've spent many orders of magnitude more time writing the question than your computer will spend setting grid
.
Finally, before I run out of hands (too late!), it doesn't matter how fast memset()
is if it doesn't do what you want. (Not setting grid
at all is even faster!)
Since the memset writes bytes,I usually use it to set an int array to zero like:
int a[100];
memset(a,0,sizeof(a));
or you can use it to set a char array,since a char is exactly a byte:
char a[100];
memset(a,'*',sizeof(a));
what's more,an int array can also be set to -1 by memset:
memset(a,-1,sizeof(a));
This is because -1 is 0xffffffff in int,and is 0xff in char(a byte).
If you type man memset
on your shell, it tells you that
void * memset(void *b, int c, size_t len)
A plain English explanation of this would be, it fills a byte string b
of length len
with each byte a value c
.
For your case,
memset(grid, 5, 100 * sizeof(int));
Since sizeof(int)==4
, thus the above code pieces looked like:
for (int i=0; i<100; i++)
grid[i]=0x05050505;
OR
char *grid2 = (char*)grid;
for (int i=0; i<100*sizeof(int); i++)
grid2[i]=0x05;
It would print out 84215045
But in most C code, we want to initialize a piece of memory block to value zero.
char
type --> \0
or NUL
int
type --> 0
float
type --> 0.0f
double
type --> 0.0
nullptr
And either gcc or clang etc. modern compilers can take well care of this for you automatically.
// variadic length array (VLA) introduced in C99
int len = 20;
char carr[len];
int iarr[len];
float farr[len];
double darr[len];
memset(carr, 0, sizeof(char)*len);
memset(iarr, 0, sizeof(int)*len);
memset(farr, 0, sizeof(float)*len);
memset(darr, 0, sizeof(double)*len);
for (int i=0; i<len; i++)
{
printf("%2d: %c\n", i, carr[i]);
printf("%2d: %i\n", i, iarr[i]);
printf("%2d: %f\n", i, farr[i]);
printf("%2d: %lf\n", i, darr[i]);
}
But be aware, C ISO Committee does not imposed such definitions, it is compiler-specific.