I have a collection (or list or array list) in which I want to put both String values and double values. I decided to make it a collection of objects and using overloading o
Old question but no answer provides a concrete solution in Java to solve the issue in a clean way.
In fact, not easy but very interesting question. Here is my contribution.
Ok the method to be called is decided at compile time. Is there a workaround to avoid using the instanceof operator?
As said in the excellent @DaveFar answer, Java supports only the single-dispatch method.
In this dispatching mode, the compiler bounds the method to invoke as soon as the compilation by relying on the declared types of the parameters and not their runtime types.
I have a collection (or list or array list) in which I want to put both String values and double values.
To solve the answer in a clean way and use a double dispatch, we have to bring abstraction for the manipulated data.
Why ?
Here a naive visitor approach to illustrate the issue :
public class DisplayVisitor {
void visit(Object o) {
System.out.println("object"));
}
void visit(Integer i) {
System.out.println("integer");
}
void visit(String s) {
System.out.println("string"));
}
}
Now, question : how visited classes may invoke the visit()
method ?
The second dispatch of the double dispatch implementation relies on the "this" context of the class that accepts to be visited.
So we need to have a accept()
method in Integer
, String
and Object
classes to perform this second dispatch :
public void accept(DisplayVisitor visitor){
visitor.visit(this);
}
But impossible ! Visited classes are built-in classes : String
, Integer
, Object
.
So we have no way to add this method.
And anyway, we don't want to add that.
So to implement the double dispatch, we have to be able to modify the classes that we want to pass as parameter in the second dispatch.
So instead of manipulating Object
and List<Object>
as declared type, we will manipulate Foo
and List<Foo>
where the Foo
class is a wrapper holding the user value.
Here is the Foo
interface :
public interface Foo {
void accept(DisplayVisitor v);
Object getValue();
}
getValue()
returns the user value.
It specifies Object
as return type but Java supports covariance returns (since the 1.5 version), so we could define a more specific type for each subclass to avoid downcasts.
ObjectFoo
public class ObjectFoo implements Foo {
private Object value;
public ObjectFoo(Object value) {
this.value = value;
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
@Override
public Object getValue() {
return value;
}
}
StringFoo
public class StringFoo implements Foo {
private String value;
public StringFoo(String string) {
this.value = string;
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
@Override
public String getValue() {
return value;
}
}
IntegerFoo
public class IntegerFoo implements Foo {
private Integer value;
public IntegerFoo(Integer integer) {
this.value = integer;
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
@Override
public Integer getValue() {
return value;
}
}
Here is the DisplayVisitor class visiting Foo
subclasses :
public class DisplayVisitor {
void visit(ObjectFoo f) {
System.out.println("object=" + f.getValue());
}
void visit(IntegerFoo f) {
System.out.println("integer=" + f.getValue());
}
void visit(StringFoo f) {
System.out.println("string=" + f.getValue());
}
}
And here is a sample code to test the implementation :
public class OOP {
void test() {
List<Foo> foos = Arrays.asList(new StringFoo("a String"),
new StringFoo("another String"),
new IntegerFoo(1),
new ObjectFoo(new AtomicInteger(100)));
DisplayVisitor visitor = new DisplayVisitor();
for (Foo foo : foos) {
foo.accept(visitor);
}
}
public static void main(String[] args) {
OOP oop = new OOP();
oop.test();
}
}
Output :
string=a String
string=another String
integer=1
object=100
Improving the implementation
The actual implementation requires the introduction of a specific wrapper class for each buit-in type we want to wrap.
As discussed, we don't have the choice to operate a double dispatch.
But note that the repeated code in Foo subclasses could be avoided :
private Integer value; // or String or Object
@Override
public Object getValue() {
return value;
}
We could indeed introduce a abstract generic class that holds the user value and provides an accessor to :
public abstract class Foo<T> {
private T value;
public Foo(T value) {
this.value = value;
}
public abstract void accept(DisplayVisitor v);
public T getValue() {
return value;
}
}
Now Foo
sublasses are lighter to declare :
public class IntegerFoo extends Foo<Integer> {
public IntegerFoo(Integer integer) {
super(integer);
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
}
public class StringFoo extends Foo<String> {
public StringFoo(String string) {
super(string);
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
}
public class ObjectFoo extends Foo<Object> {
public ObjectFoo(Object value) {
super(value);
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
}
And the test()
method should be modified to declare a wildcard type (?
) for the Foo
type in the List<Foo>
declaration.
void test() {
List<Foo<?>> foos = Arrays.asList(new StringFoo("a String object"),
new StringFoo("anoter String object"),
new IntegerFoo(1),
new ObjectFoo(new AtomicInteger(100)));
DisplayVisitor visitor = new DisplayVisitor();
for (Foo<?> foo : foos) {
foo.accept(visitor);
}
}
In fact, if really needed, we could simplify further Foo
subclasses by introducing java code generation.
Declaring this subclass :
public class StringFoo extends Foo<String> {
public StringFoo(String string) {
super(string);
}
@Override
public void accept(DisplayVisitor v) {
v.visit(this);
}
}
could as simple as declaring a class and adding an annotation on:
@Foo(String.class)
public class StringFoo { }
Where Foo
is a custom annotation processed at compile time.
What you want is double or more general multiple dispatch, something that is actually implemented in other languages (common lisp comes to mind)
Presumably the main reason java doesn't have it, is because it comes at a performance penalty because overload resolution has to be done at runtime and not compile time. The usual way around this is the visitor pattern - pretty ugly, but that's how it is.
When calling a method that is overloaded, Java picks the most restrictive type based on the type of the variable passed to the function. It does not use the type of the actual instance.
This post seconds voo's answer, and gives details about/alternatives to late binding.
General JVMs only use single dispatch: the runtime type is only considered for the receiver object; for the method's parameters, the static type is considered. An efficient implementation with optimizations is quite easy using method tables (which are similar to C++'s virtual tables). You can find details e.g. in the HotSpot Wiki.
If you want multiple dispatch for your parameters, take a look at
this.resend(...)
instead of super(...)
to invoke the most-specific overridden method of the enclosing method;If you want to stick with Java, you can
Value dispatching:
class C {
static final int INITIALIZED = 0;
static final int RUNNING = 1;
static final int STOPPED = 2;
void m(int i) {
// the default method
}
void m(int@@INITIALIZED i) {
// handle the case when we're in the initialized `state'
}
void m(int@@RUNNING i) {
// handle the case when we're in the running `state'
}
void m(int@@STOPPED i) {
// handle the case when we're in the stopped `state'
}
}
this isn't polymoprhism, you've simply overloaded a method and called it with parameter of object type
Everything in Java is an Object
/object (except primitive types). You store strings and integers as objects, and then as you call the prove
method they are still referred to as objects. You should have a look at the instanceof
keyword. Check this link
void prove(Object o){
if (o instanceof String)
System.out.println("String");
....
}