numpy array concatenate: “ValueError: all the input arrays must have same number of dimensions”

后端 未结 3 866
伪装坚强ぢ
伪装坚强ぢ 2020-11-28 08:36

How to concatenate these numpy arrays?

first np.array with a shape (5,4)

[[  6487    400 489580      0]
 [  6488         


        
相关标签:
3条回答
  • 2020-11-28 09:25

    There's also np.c_

    >>> a = np.arange(20).reshape(5, 4)
    >>> b = np.arange(-1, -6, -1)
    >>> a
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15],
           [16, 17, 18, 19]])                                                                                                                                   
    >>> b                                                                                                                                                       
    array([-1, -2, -3, -4, -5])                                                                                                                                 
    >>> np.c_[a, b]
    array([[ 0,  1,  2,  3, -1],          
           [ 4,  5,  6,  7, -2],                       
           [ 8,  9, 10, 11, -3],                      
           [12, 13, 14, 15, -4],                                
           [16, 17, 18, 19, -5]])
    
    0 讨论(0)
  • 2020-11-28 09:27

    You can do something like this.

    import numpy as np
    
    x = np.random.randint(100, size=(5, 4))
    y = [16, 15, 12, 12, 17]
    
    print(x)
    
    val = np.concatenate((x,np.reshape(y,(x.shape[0],1))),axis=1)
    print(val)
    

    This outputs:

    [[32 37 35 53]
     [64 23 95 76]
     [17 76 11 30]
     [35 42  6 80]
     [61 88  7 56]]
    
    [[32 37 35 53 16]
     [64 23 95 76 15]
     [17 76 11 30 12]
     [35 42  6 80 12]
     [61 88  7 56 17]]
    
    0 讨论(0)
  • 2020-11-28 09:31

    To use np.concatenate, we need to extend the second array to 2D and then concatenate along axis=1 -

    np.concatenate((a,b[:,None]),axis=1)
    

    Alternatively, we can use np.column_stack that takes care of it -

    np.column_stack((a,b))
    

    Sample run -

    In [84]: a
    Out[84]: 
    array([[54, 30, 55, 12],
           [64, 94, 50, 72],
           [67, 31, 56, 43],
           [26, 58, 35, 14],
           [97, 76, 84, 52]])
    
    In [85]: b
    Out[85]: array([56, 70, 43, 19, 16])
    
    In [86]: np.concatenate((a,b[:,None]),axis=1)
    Out[86]: 
    array([[54, 30, 55, 12, 56],
           [64, 94, 50, 72, 70],
           [67, 31, 56, 43, 43],
           [26, 58, 35, 14, 19],
           [97, 76, 84, 52, 16]])
    

    If b is such that its a 1D array of dtype=object with a shape of (1,), most probably all of the data is contained in the only element in it, we need to flatten it out before concatenating. For that purpose, we can use np.concatenate on it too. Here's a sample run to make the point clear -

    In [118]: a
    Out[118]: 
    array([[54, 30, 55, 12],
           [64, 94, 50, 72],
           [67, 31, 56, 43],
           [26, 58, 35, 14],
           [97, 76, 84, 52]])
    
    In [119]: b
    Out[119]: array([array([30, 41, 76, 13, 69])], dtype=object)
    
    In [120]: b.shape
    Out[120]: (1,)
    
    In [121]: np.concatenate((a,np.concatenate(b)[:,None]),axis=1)
    Out[121]: 
    array([[54, 30, 55, 12, 30],
           [64, 94, 50, 72, 41],
           [67, 31, 56, 43, 76],
           [26, 58, 35, 14, 13],
           [97, 76, 84, 52, 69]])
    
    0 讨论(0)
提交回复
热议问题