I have this dataframe:
state county city region mmatrix X1 X2 X3 A1 A2 A3 B1 B2 B3 C1 C2 C3
1 1 1
You can expand it further using regex for a broader pattern search. I have a data frame that has a bunch of columns with "name"
, "upper_name"and
"lower_name"` as they represent confidence intervals for a bunch of series, but I don't need them all. So, using regex, you can do the following:
pattern = "(upper_[a-z]*)|(lower_[a-z]*)"
policyData <- policyData[, -grep(pattern = pattern, colnames(policyData))]
The "|" allows me to include an or statement in the regex so I can do it once with a single patter rather than look for each pattern.
For excluding any string you can use...
# Search string to exclude
strng <- "1"
df <- data.frame(matrix(runif(25,max=10),nrow=5))
colnames(df) <- paste( "EX" , 1:5 )
df_red <- df[, -( grep(paste0( strng , "$" ) , colnames(df),perl = TRUE) ) ]
df
# EX 1 EX 2 EX 3 EX 4 EX 5
# 1 7.332913 4.972780 1.175947853 6.428073 8.625763
# 2 2.730271 3.734072 6.031157537 1.305951 8.012606
# 3 9.450122 3.259247 2.856123205 5.067294 7.027795
# 4 9.682430 5.295177 0.002015966 9.322912 7.424568
# 5 1.225359 1.577659 4.013616377 5.092042 5.130887
df_red
# EX 2 EX 3 EX 4 EX 5
# 1 4.972780 1.175947853 6.428073 8.625763
# 2 3.734072 6.031157537 1.305951 8.012606
# 3 3.259247 2.856123205 5.067294 7.027795
# 4 5.295177 0.002015966 9.322912 7.424568
# 5 1.577659 4.013616377 5.092042 5.130887
I found a simple answer using dplyr/tidyverse. If your colnames contain "This", then all variables containing "This" will be dropped.
library(tidyverse)
df_new <- df %>% select(-contains("This"))
Just as an additional answer, since I stumbled across this, when looking for the data.table
solution to this problem.
library(data.table)
dt <- data.table(df)
drop.cols <- grep("1$", colnames(dt))
dt[, (drop.cols) := NULL]
Your code works like a charm if I apply it to a minimal example and just search for the string "A":
df <- data.frame(ID = 1:10,
A1 = rnorm(10),
A2 = rnorm(10),
B1 = letters[1:10],
B2 = letters[11:20])
df[, -grep("A", colnames(df))]
So your problem is more a regular expression problem, not how to drop columns. If I run your code, I get an error:
df[, -grep("\\3$", colnames(df))]
Error in grep("\\3$", colnames(df)) :
invalid regular expression '\3$', reason 'Invalid back reference'
Update: Why don't you just use this following expression?
df[, -grep("1$", colnames(df))]
ID A2 B2
1 1 2.0957940 k
2 2 -1.7177042 l
3 3 -0.0448357 m
4 4 1.2899925 n
5 5 0.7569659 o
6 6 -0.5048024 p
7 7 0.6929080 q
8 8 -0.5116399 r
9 9 -1.2621066 s
10 10 0.7664955 t