I am learning the ropes in Python. When I try to print an object of class Foobar
using the print()
function, I ge
If you're in a situation like @Keith you could try:
print(a.__dict__)
It goes against what I would consider good style but if you're just trying to debug then it should do what you want.
A generic way that can be applied to any class without specific formatting could be done as follows:
class Element:
def __init__(self, name, symbol, number):
self.name = name
self.symbol = symbol
self.number = number
def __str__(self):
return str(self.__class__) + ": " + str(self.__dict__)
And then,
elem = Element('my_name', 'some_symbol', 3)
print(elem)
produces
__main__.Element: {'symbol': 'some_symbol', 'name': 'my_name', 'number': 3}
You need to use __repr__
. This is a standard function like __init__
.
For example:
class Foobar():
"""This will create Foobar type object."""
def __init__(self):
print "Foobar object is created."
def __repr__(self):
return "Type what do you want to see here."
a = Foobar()
print a
For Python 3:
If the specific format isn't important (e.g. for debugging) just inherit from the Printable class below. No need to write code for every object.
Inspired by this answer
class Printable:
def __repr__(self):
from pprint import pformat
return "<" + type(self).__name__ + "> " + pformat(vars(self), indent=4, width=1)
# Example Usage
class MyClass(Printable):
pass
my_obj = MyClass()
my_obj.msg = "Hello"
my_obj.number = "46"
print(my_obj)
>>> class Test:
... def __repr__(self):
... return "Test()"
... def __str__(self):
... return "member of Test"
...
>>> t = Test()
>>> t
Test()
>>> print(t)
member of Test
The __str__
method is what happens when you print it, and the __repr__
method is what happens when you use the repr() function (or when you look at it with the interactive prompt). If this isn't the most Pythonic method, I apologize, because I'm still learning too - but it works.
If no __str__
method is given, Python will print the result of __repr__
instead. If you define __str__
but not __repr__
, Python will use what you see above as the __repr__
, but still use __str__
for printing.
Just to add my two cents to @dbr's answer, following is an example of how to implement this sentence from the official documentation he's cited:
"[...] to return a string that would yield an object with the same value when passed to eval(), [...]"
Given this class definition:
class Test(object):
def __init__(self, a, b):
self._a = a
self._b = b
def __str__(self):
return "An instance of class Test with state: a=%s b=%s" % (self._a, self._b)
def __repr__(self):
return 'Test("%s","%s")' % (self._a, self._b)
Now, is easy to serialize instance of Test
class:
x = Test('hello', 'world')
print 'Human readable: ', str(x)
print 'Object representation: ', repr(x)
print
y = eval(repr(x))
print 'Human readable: ', str(y)
print 'Object representation: ', repr(y)
print
So, running last piece of code, we'll get:
Human readable: An instance of class Test with state: a=hello b=world
Object representation: Test("hello","world")
Human readable: An instance of class Test with state: a=hello b=world
Object representation: Test("hello","world")
But, as I said in my last comment: more info is just here!