I had an article, but I lost it. It showed and described a couple of C/C++ tricks that people should be careful. One of them interested me but now that I am trying to repli
Some of these answers point out that the compiler can optimize away the variable 'a' since it is declared const
. If you really want to be able to change the value of a
then you need to mark it as volatile
const volatile int a = 3; // I promise i won't change a
int *ptr = (int *)&a;
(*ptr) = 5; // I'm a liar, a is now 5
Of course, declaring something as const volatile
should really illustrate just how silly this is.
you need to cast away the constness:
linux ~ $ cat constTest.c
#include <stdio.h>
void modA( int *x )
{
*x = 7;
}
int main( void )
{
const int a = 3; // I promisse i won't change a
int *ptr;
ptr = (int*)( &a );
printf( "A=%d\n", a );
*ptr = 5; // I'm a liar, a is now 5
printf( "A=%d\n", a );
*((int*)(&a)) = 6;
printf( "A=%d\n", a );
modA( (int*)( &a ));
printf( "A=%d\n", a );
return 0;
}
linux ~ $ gcc constTest.c -o constTest
linux ~ $ ./constTest
A=3
A=5
A=6
A=7
linux ~ $ g++ constTest.c -o constTest
linux ~ $ ./constTest
A=3
A=3
A=3
A=3
also the common answer doesn't work in g++ 4.1.2
linux ~ $ cat constTest2.cpp
#include <iostream>
using namespace std;
int main( void )
{
const int a = 3; // I promisse i won't change a
int *ptr;
ptr = const_cast<int*>( &a );
cout << "A=" << a << endl;
*ptr = 5; // I'm a liar, a is now 5
cout << "A=" << a << endl;
return 0;
}
linux ~ $ g++ constTest2.cpp -o constTest2
linux ~ $ ./constTest2
A=3
A=3
linux ~ $
btw.. this is never recommended... I found that g++ doesn't allow this to happen.. so that may be the issue you are experiencing.
Note any attempt to cast away constness is undefined by the standard. From 7.1.5.1 of the standard:
Except that any class member declared mutable can be modified, any attempt to modify a const object during its lifetime results in undefined behavior.
And right after this example is used:
const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined: modifies a const object
So in short what you want to do isn't possible using standard C++.
Further when the compiler encounters a declaration like
const int a = 3; // I promisse i won't change a
it is free to replace any occurance of 'a' with 3 (effectively doing the same thing as #define a 3
)
The step you're missing is that you don't need the int* pointer. The line:
const int *ptr_to_a = &a; // I still promiss i won't change a;
actually says you won't change ptr_to_a, not a. So if you changed your code to read like this:
const int a = 3; // I promise I won't change a
const int *ptr_to_a = &a; // I promise I won't change ptr_to_a, not a.
(*ptr_to_a) = 5; // a is now 5
a is now 5. You can change a through ptr_to_a without any warning.
EDIT:
The above is incorrect. It turns out I was confusing a similar trick with a shared_ptr, in which you can get access to the raw pointer and modify the internal data value without firing off any warnings. That is:
#include <iostream>
#include <boost/shared_ptr.hpp>
int main()
{
const boost::shared_ptr<int>* a = new boost::shared_ptr<int>(new int(3));
*(a->get()) = 5;
std::cout << "A is: " << *(a->get()) << std::endl;
return 0;
}
Will produce 5.
const int foo = 42;
const int *pfoo = &foo;
const void *t = pfoo;
void *s = &t; // pointer to pointer to int
int **z = (int **)s; // pointer to int
**z = 0;
#include<iostream>
int main( void )
{
int i = 3;
const int *pi = &i;
int *pj = (int*)&i;
*pj = 4;
getchar();
return 0;
}