How would I count consecutive characters in Python to see the number of times each unique digit repeats before the next unique digit?
At first, I thought I could do
This is my simple code for finding maximum number of consecutive 1's in binaray string in python 3:
count= 0
maxcount = 0
for i in str(bin(13)):
if i == '1':
count +=1
elif count > maxcount:
maxcount = count;
count = 0
else:
count = 0
if count > maxcount: maxcount = count
maxcount
This is my simple and efficient code for finding maximum number of consecutive binary 1's in python:
def consec(x):
count=0
while x!=0:
x= x & (x<<1)
count+=1
return count
n = int(input())
print(consec(n))
Using Bit Magic: The idea is based on the concept that if we AND a bit sequence with a shifted version of itself, we’re effectively removing the trailing 1 from every sequence of consecutive 1s.
11101111 (x)
& 11011110 (x << 1)
----------
11001110 (x & (x << 1))
^ ^
| |
trailing 1 removed
So the operation x = (x & (x << 1)) reduces length of every sequence of 1s by one in binary representation of x. If we keep doing this operation in a loop, we end up with x = 0. The number of iterations required to reach 0 is actually length of the longest consecutive sequence of 1s.
**
Ooh nobody's posted itertools.groupby yet!
s = "111000222334455555"
from itertools import groupby
groups = groupby(s)
result = [(label, sum(1 for _ in group)) for label, group in groups]
After which, result
looks like:
[("1": 3), ("0", 3), ("2", 3), ("3", 2), ("4", 2), ("5", 5)]
And you could format with something like:
", ".join("{}x{}".format(label, count) for label, count in result)
# "1x3, 0x3, 2x3, 3x2, 4x2, 5x5"
Someone in the comments is concerned that you want a total count of numbers so "11100111" -> {"1":6, "0":2}
. In that case you want to use a collections.Counter:
from collections import Counter
s = "11100111"
result = Counter(s)
# {"1":6, "0":2}
As many have pointed out, your method fails because you're looping through range(len(s))
but addressing s[i+1]
. This leads to an off-by-one error when i
is pointing at the last index of s
, so i+1
raises an IndexError
. One way to fix this would be to loop through range(len(s)-1)
, but it's more pythonic to generate something to iterate over.
For string that's not absolutely huge, zip(s, s[1:])
isn't a a performance issue, so you could do:
counts = []
count = 1
for a, b in zip(s, s[1:]):
if a==b:
count += 1
else:
counts.append((a, count))
count = 1
The only problem being that you'll have to special-case the last character if it's unique. That can be fixed with itertools.zip_longest
import itertools
counts = []
count = 1
for a, b in itertools.zip_longest(s, s[1:], fillvalue=None):
if a==b:
count += 1
else:
counts.append((a, count))
count = 1
If you do have a truly huge string and can't stand to hold two of them in memory at a time, you can use the itertools recipe pairwise.
def pairwise(iterable):
"""iterates pairwise without holding an extra copy of iterable in memory"""
a, b = itertools.tee(iterable)
next(b, None)
return itertools.zip_longest(a, b, fillvalue=None)
counts = []
count = 1
for a, b in pairwise(s):
...
#!/usr/bin/python3 -B
charseq = 'abbcccffffdd'
distros = { c:1 for c in charseq }
for c in range(len(charseq)-1):
if charseq[c] == charseq[c+1]:
distros[charseq[c]] += 1
print(distros)
I'll provide a brief explanation for the interesting lines.
distros = { c:1 for c in charseq }
The line above is a dictionary comprehension, and it basically iterates over the characters in charseq
and creates a key/value pair for a dictionary where the key is the character and the value is the number of times it has been encountered so far.
Then comes the loop:
for c in range(len(charseq)-1):
We go from 0
to length - 1
to avoid going out of bounds with the c+1
indexing in the loop's body.
if charseq[c] == charseq[c+1]:
distros[charseq[c]] += 1
At this point, every match we encounter we know is consecutive, so we simply add 1 to the character key. For example, if we take a snapshot of one iteration, the code could look like this (using direct values instead of variables, for illustrative purposes):
# replacing vars for their values
if charseq[1] == charseq[1+1]:
distros[charseq[1]] += 1
# this is a snapshot of a single comparison here and what happens later
if 'b' == 'b':
distros['b'] += 1
You can see the program output below with the correct counts:
➜ /tmp ./counter.py
{'b': 2, 'a': 1, 'c': 3, 'd': 4}
If we want to count consecutive characters without looping, we can make use of pandas
:
In [1]: import pandas as pd
In [2]: sample = 'abbcccffffddaaaaffaaa'
In [3]: d = pd.Series(list(sample))
In [4]: [(cat[1], grp.shape[0]) for cat, grp in d.groupby([d.ne(d.shift()).cumsum(), d])]
Out[4]: [('a', 1), ('b', 2), ('c', 3), ('d', 4), ('a', 4), ('f', 2), ('a', 3)]
The key is to find the first elements that are different from their previous values and then make proper groupings in pandas
:
In [5]: sample = 'abba'
In [6]: d = pd.Series(list(sample))
In [7]: d.ne(d.shift())
Out[7]:
0 True
1 True
2 False
3 True
dtype: bool
In [8]: d.ne(d.shift()).cumsum()
Out[8]:
0 1
1 2
2 2
3 3
dtype: int32
There is no need to count or groupby. Just note the indices where a change occurs and subtract consecutive indicies.
w = "111000222334455555"
iw = [0] + [i+1 for i in range(len(w)-1) if w[i] != w[i+1]] + [len(w)]
dw = [w[i] for i in range(len(w)-1) if w[i] != w[i+1]] + [w[-1]]
cw = [ iw[j] - iw[j-1] for j in range(1, len(iw) ) ]
print(dw) # digits
['1', '0', '2', '3', '4']
print(cw) # counts
[3, 3, 3, 2, 2, 5]
w = 'XXYXYYYXYXXzzzzzYYY'
iw = [0] + [i+1 for i in range(len(w)-1) if w[i] != w[i+1]] + [len(w)]
dw = [w[i] for i in range(len(w)-1) if w[i] != w[i+1]] + [w[-1]]
cw = [ iw[j] - iw[j-1] for j in range(1, len(iw) ) ]
print(dw) # characters
print(cw) # digits
['X', 'Y', 'X', 'Y', 'X', 'Y', 'X', 'z', 'Y']
[2, 1, 1, 3, 1, 1, 2, 5, 3]