Vectorized look-up of values in Pandas dataframe

后端 未结 1 1275
说谎
说谎 2020-11-28 04:55

I have two pandas dataframes one called \'orders\' and another one called \'daily_prices\'. daily_prices is as follows:

              AAPL    GOOG     IBM            


        
相关标签:
1条回答
  • 2020-11-28 05:46

    Use our friend lookup, designed precisely for this purpose:

    In [17]: prices
    Out[17]: 
                  AAPL    GOOG     IBM    XOM
    2011-01-10  339.44  614.21  142.78  71.57
    2011-01-13  342.64  616.69  143.92  73.08
    2011-01-26  340.82  616.50  155.74  75.89
    2011-02-02  341.29  612.00  157.93  79.46
    2011-02-10  351.42  616.44  159.32  79.68
    2011-03-03  356.40  609.56  158.73  82.19
    2011-05-03  345.14  533.89  167.84  82.00
    2011-06-03  340.42  523.08  160.97  78.19
    2011-06-10  323.03  509.51  159.14  76.84
    2011-08-01  393.26  606.77  176.28  76.67
    2011-12-20  392.46  630.37  184.14  79.97
    
    In [18]: orders
    Out[18]: 
                      Date direction  size ticker  prices
    0  2011-01-10 00:00:00       Buy  1500   AAPL  339.44
    1  2011-01-13 00:00:00      Sell  1500   AAPL  342.64
    2  2011-01-13 00:00:00       Buy  4000    IBM  143.92
    3  2011-01-26 00:00:00       Buy  1000   GOOG  616.50
    4  2011-02-02 00:00:00      Sell  4000    XOM   79.46
    5  2011-02-10 00:00:00       Buy  4000    XOM   79.68
    6  2011-03-03 00:00:00      Sell  1000   GOOG  609.56
    7  2011-03-03 00:00:00      Sell  2200    IBM  158.73
    8  2011-06-03 00:00:00      Sell  3300    IBM  160.97
    9  2011-05-03 00:00:00       Buy  1500    IBM  167.84
    10 2011-06-10 00:00:00       Buy  1200   AAPL  323.03
    11 2011-08-01 00:00:00       Buy    55   GOOG  606.77
    12 2011-08-01 00:00:00      Sell    55   GOOG  606.77
    13 2011-12-20 00:00:00      Sell  1200   AAPL  392.46
    
    In [19]: prices.lookup(orders.Date, orders.ticker)
    Out[19]: 
    array([ 339.44,  342.64,  143.92,  616.5 ,   79.46,   79.68,  609.56,
            158.73,  160.97,  167.84,  323.03,  606.77,  606.77,  392.46])
    
    0 讨论(0)
提交回复
热议问题