I have a DataFrame using pandas and column labels that I need to edit to replace the original column labels.
I\'d like to change the column names in a DataFrame
There have been some significant updates to column renaming in version 0.21.
axis
parameter which may be set to columns
or 1
. This update makes this method match the rest of the pandas API. It still has the index
and columns
parameters but you are no longer forced to use them. inplace
set to False
enables you to rename all the index or column labels with a list.Construct sample DataFrame:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],
'$c':[5,6], '$d':[7,8],
'$e':[9,10]})
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
rename
with axis='columns'
or axis=1
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')
or
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)
Both result in the following:
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
It is still possible to use the old method signature:
df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})
The rename
function also accepts functions that will be applied to each column name.
df.rename(lambda x: x[1:], axis='columns')
or
df.rename(lambda x: x[1:], axis=1)
set_axis
with a list and inplace=False
You can supply a list to the set_axis
method that is equal in length to the number of columns (or index). Currently, inplace
defaults to True
, but inplace
will be defaulted to False
in future releases.
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)
or
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)
df.columns = ['a', 'b', 'c', 'd', 'e']
?There is nothing wrong with assigning columns directly like this. It is a perfectly good solution.
The advantage of using set_axis
is that it can be used as part of a method chain and that it returns a new copy of the DataFrame. Without it, you would have to store your intermediate steps of the chain to another variable before reassigning the columns.
# new for pandas 0.21+
df.some_method1()
.some_method2()
.set_axis()
.some_method3()
# old way
df1 = df.some_method1()
.some_method2()
df1.columns = columns
df1.some_method3()
If you have to deal with loads of columns named by the providing system out of your control, I came up with the following approach that is a combination of a general approach and specific replacments in one go.
First create a dictionary from the dataframe column names using regex expressions in order to throw away certain appendixes of column names and then add specific replacements to the dictionary to name core columns as expected later in the receiving database.
This is then applied to the dataframe in one go.
dict=dict(zip(df.columns,df.columns.str.replace('(:S$|:C1$|:L$|:D$|\.Serial:L$)','')))
dict['brand_timeseries:C1']='BTS'
dict['respid:L']='RespID'
dict['country:C1']='CountryID'
dict['pim1:D']='pim_actual'
df.rename(columns=dict, inplace=True)
I needed to rename features for XGBoost, it didn't like any of these:
import re
regex = r"[!\"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~ ]+"
X_trn.columns = X_trn.columns.str.replace(regex, '_', regex=True)
X_tst.columns = X_tst.columns.str.replace(regex, '_', regex=True)