I have a DataFrame using pandas and column labels that I need to edit to replace the original column labels.
I\'d like to change the column names in a DataFrame
Let's Understand renaming by a small example...
1.Renaming columns using mapping:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) #creating a df with column name A and B
df.rename({"A": "new_a", "B": "new_b"},axis='columns',inplace =True) #renaming column A with 'new_a' and B with 'new_b'
output:
new_a new_b
0 1 4
1 2 5
2 3 6
2.Renaming index/Row_Name using mapping:
df.rename({0: "x", 1: "y", 2: "z"},axis='index',inplace =True) #Row name are getting replaced by 'x','y','z'.
output:
new_a new_b
x 1 4
y 2 5
z 3 6
Note that these approach do not work for a MultiIndex. For a MultiIndex, you need to do something like the following:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
df.columns = ['a', 'b', 'c', 'd', 'e']
It will replace the existing names with the names you provide, in the order you provide.
Real simple just use
df.columns = ['Name1', 'Name2', 'Name3'...]
and it will assign the column names by the order you put them
Here's a nifty little function I like to use to cut down on typing:
def rename(data, oldnames, newname):
if type(oldnames) == str: #input can be a string or list of strings
oldnames = [oldnames] #when renaming multiple columns
newname = [newname] #make sure you pass the corresponding list of new names
i = 0
for name in oldnames:
oldvar = [c for c in data.columns if name in c]
if len(oldvar) == 0:
raise ValueError("Sorry, couldn't find that column in the dataset")
if len(oldvar) > 1: #doesn't have to be an exact match
print("Found multiple columns that matched " + str(name) + " :")
for c in oldvar:
print(str(oldvar.index(c)) + ": " + str(c))
ind = input('please enter the index of the column you would like to rename: ')
oldvar = oldvar[int(ind)]
if len(oldvar) == 1:
oldvar = oldvar[0]
data = data.rename(columns = {oldvar : newname[i]})
i += 1
return data
Here is an example of how it works:
In [2]: df = pd.DataFrame(np.random.randint(0,10,size=(10, 4)), columns=['col1','col2','omg','idk'])
#first list = existing variables
#second list = new names for those variables
In [3]: df = rename(df, ['col','omg'],['first','ohmy'])
Found multiple columns that matched col :
0: col1
1: col2
please enter the index of the column you would like to rename: 0
In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')
Another way we could replace the original column labels is by stripping the unwanted characters (here '$') from the original column labels.
This could have been done by running a for loop over df.columns and appending the stripped columns to df.columns.
Instead , we can do this neatly in a single statement by using list comprehension like below:
df.columns = [col.strip('$') for col in df.columns]
(strip
method in Python strips the given character from beginning and end of the string.)