I have a pandas.DataFrame with measurements taken at consecutive points in time. Along with each measurement the system under observation had a distinct state at each point
You could use np.diff() to test where a segment starts/ends and iterate over those results. Its a very simple solution, so probably not the most performent one.
a = np.array([3,3,3,3,3,4,4,4,4,4,1,1,1,1,4,4,12,12,12])
prev = 0
splits = np.append(np.where(np.diff(a) != 0)[0],len(a)+1)+1
for split in splits:
print np.arange(1,a.size+1,1)[prev:split]
prev = split
Results in:
[1 2 3 4 5]
[ 6 7 8 9 10]
[11 12 13 14]
[15 16]
[17 18 19]
One-liner:
df.reset_index().groupby('A')['index'].apply(np.array)
Code for example:
In [1]: import numpy as np
In [2]: from pandas import *
In [3]: df = DataFrame([3]*4+[4]*4+[1]*4, columns=['A'])
In [4]: df
Out[4]:
A
0 3
1 3
2 3
3 3
4 4
5 4
6 4
7 4
8 1
9 1
10 1
11 1
In [5]: df.reset_index().groupby('A')['index'].apply(np.array)
Out[5]:
A
1 [8, 9, 10, 11]
3 [0, 1, 2, 3]
4 [4, 5, 6, 7]
You can also directly access the information from the groupby object:
In [1]: grp = df.groupby('A')
In [2]: grp.indices
Out[2]:
{1L: array([ 8, 9, 10, 11], dtype=int64),
3L: array([0, 1, 2, 3], dtype=int64),
4L: array([4, 5, 6, 7], dtype=int64)}
In [3]: grp.indices[3]
Out[3]: array([0, 1, 2, 3], dtype=int64)
To address the situation that DSM mentioned you could do something like:
In [1]: df['block'] = (df.A.shift(1) != df.A).astype(int).cumsum()
In [2]: df
Out[2]:
A block
0 3 1
1 3 1
2 3 1
3 3 1
4 4 2
5 4 2
6 4 2
7 4 2
8 1 3
9 1 3
10 1 3
11 1 3
12 3 4
13 3 4
14 3 4
15 3 4
Now groupby both columns and apply the lambda function:
In [77]: df.reset_index().groupby(['A','block'])['index'].apply(np.array)
Out[77]:
A block
1 3 [8, 9, 10, 11]
3 1 [0, 1, 2, 3]
4 [12, 13, 14, 15]
4 2 [4, 5, 6, 7]