In Objective-C you have a distinction between atomic and nonatomic properties:
@property (nonatomic, strong) NSObject *nonatomicObject;
@property (atomic, st
It is probably to early to answer this question. Currently swift lacks access modifiers, so there is not obvious way to add code which manages concurrency around a properties getter / setter. Furthermore, the Swift Language doesn't seem to have any information about concurrency yet! (It also lacks KVO etc ...)
I think the answer to this question will become clear in future releases.
class Example {
private lazy var semaphore = DispatchSemaphore(value: 1)
func executeThreadSafeFunc1() {
// Lock access. Only first thread can execute code below.
// Other threads will wait until semaphore.signal() will execute
semaphore.wait()
// your code
semaphore.signal() // Unlock access
}
func executeThreadSafeFunc2() {
// Lock access. Only first thread can execute code below.
// Other threads will wait until semaphore.signal() will execute
semaphore.wait()
DispatchQueue.global(qos: .background).async {
// your code
self.semaphore.signal() // Unlock access
}
}
}
class Atomic {
let dispatchGroup = DispatchGroup()
private var variable = 0
// Usage of semaphores
func semaphoreSample() {
// value: 1 - number of threads that have simultaneous access to the variable
let atomicSemaphore = DispatchSemaphore(value: 1)
variable = 0
runInSeveralQueues { dispatchQueue in
// Only (value) queqes can run operations betwen atomicSemaphore.wait() and atomicSemaphore.signal()
// Others queues await their turn
atomicSemaphore.wait() // Lock access until atomicSemaphore.signal()
self.variable += 1
print("\(dispatchQueue), value: \(self.variable)")
atomicSemaphore.signal() // Unlock access
}
notifyWhenDone {
atomicSemaphore.wait() // Lock access until atomicSemaphore.signal()
print("variable = \(self.variable)")
atomicSemaphore.signal() // Unlock access
}
}
// Usage of sync of DispatchQueue
func dispatchQueueSync() {
let atomicQueue = DispatchQueue(label: "dispatchQueueSync")
variable = 0
runInSeveralQueues { dispatchQueue in
// Only queqe can run this closure (atomicQueue.sync {...})
// Others queues await their turn
atomicQueue.sync {
self.variable += 1
print("\(dispatchQueue), value: \(self.variable)")
}
}
notifyWhenDone {
atomicQueue.sync {
print("variable = \(self.variable)")
}
}
}
// Usage of objc_sync_enter/objc_sync_exit
func objcSync() {
variable = 0
runInSeveralQueues { dispatchQueue in
// Only one queqe can run operations betwen objc_sync_enter(self) and objc_sync_exit(self)
// Others queues await their turn
objc_sync_enter(self) // Lock access until objc_sync_exit(self).
self.variable += 1
print("\(dispatchQueue), value: \(self.variable)")
objc_sync_exit(self) // Unlock access
}
notifyWhenDone {
objc_sync_enter(self) // Lock access until objc_sync_exit(self)
print("variable = \(self.variable)")
objc_sync_exit(self) // Unlock access
}
}
}
// Helpers
extension Atomic {
fileprivate func notifyWhenDone(closure: @escaping ()->()) {
dispatchGroup.notify(queue: .global(qos: .utility)) {
closure()
print("All work done")
}
}
fileprivate func runInSeveralQueues(closure: @escaping (DispatchQueue)->()) {
async(dispatch: .main, closure: closure)
async(dispatch: .global(qos: .userInitiated), closure: closure)
async(dispatch: .global(qos: .utility), closure: closure)
async(dispatch: .global(qos: .default), closure: closure)
async(dispatch: .global(qos: .userInteractive), closure: closure)
}
private func async(dispatch: DispatchQueue, closure: @escaping (DispatchQueue)->()) {
for _ in 0 ..< 100 {
dispatchGroup.enter()
dispatch.async {
let usec = Int(arc4random()) % 100_000
usleep(useconds_t(usec))
closure(dispatch)
self.dispatchGroup.leave()
}
}
}
}
Atomic().semaphoreSample()
//Atomic().dispatchQueueSync()
//Atomic().objcSync()
From Swift 5.1 you can use property wrappers to make specific logic for your properties. This is atomic wrapper implementation:
@propertyWrapper
struct atomic<T> {
private var value: T
private let lock = NSLock()
init(wrappedValue value: T) {
self.value = value
}
var wrappedValue: T {
get { getValue() }
set { setValue(newValue: newValue) }
}
func getValue() -> T {
lock.lock()
defer { lock.unlock() }
return value
}
mutating func setValue(newValue: T) {
lock.lock()
defer { lock.unlock() }
value = newValue
}
}
How to use:
class Shared {
@atomic var value: Int
...
}
Swift has no language constructs around thread safety. It is assumed that you will be using the provided libraries to do your own thread safety management. There are a large number of options you have in implementing thread safety including pthread mutexes, NSLock, and dispatch_sync as a mutex mechanism. See Mike Ash's recent post on the subject: https://mikeash.com/pyblog/friday-qa-2015-02-06-locks-thread-safety-and-swift.html So the direct answer to your question of "Can I read and write to this variable in parallel safely?" is No.
It's very early to assume as no low-level documentation is available, but you can study from assembly. Hopper Disassembler is a great tool.
@interface ObjectiveCar : NSObject
@property (nonatomic, strong) id engine;
@property (atomic, strong) id driver;
@end
Uses objc_storeStrong
and objc_setProperty_atomic
for nonatomic and atomic respectively, where
class SwiftCar {
var engine : AnyObject?
init() {
}
}
uses swift_retain
from libswift_stdlib_core
and, apparently, does not have thread safety built in.
We can speculate that additional keywords (similar to @lazy
) might be introduced later on.
Update 07/20/15: according to this blogpost on singletons swift environment can make certain cases thread safe for you, i.e.:
class Car {
static let sharedCar: Car = Car() // will be called inside of dispatch_once
}
private let sharedCar: Car2 = Car2() // same here
class Car2 {
}
Update 05/25/16: Keep an eye out for swift evolution proposal https://github.com/apple/swift-evolution/blob/master/proposals/0030-property-behavior-decls.md - it looks like it is going to be possible to have @atomic
behavior implemented by yourself.
Here is the atomic property wrapper that I use extensively. I made the actual locking mechanism a protocol, so I could experiement with different mechanisms. I tried semaphores, DispatchQueues
, and the pthread_rwlock_t
. The pthread_rwlock_t
was chosen because it appears to have the lowest overhead, and a lower chance of a priority inversion.
/// Defines a basic signature that all locks will conform to. Provides the basis for atomic access to stuff.
protocol Lock {
init()
/// Lock a resource for writing. So only one thing can write, and nothing else can read or write.
func writeLock()
/// Lock a resource for reading. Other things can also lock for reading at the same time, but nothing else can write at that time.
func readLock()
/// Unlock a resource
func unlock()
}
final class PThreadRWLock: Lock {
private var rwLock = pthread_rwlock_t()
init() {
guard pthread_rwlock_init(&rwLock, nil) == 0 else {
preconditionFailure("Unable to initialize the lock")
}
}
deinit {
pthread_rwlock_destroy(&rwLock)
}
func writeLock() {
pthread_rwlock_wrlock(&rwLock)
}
func readLock() {
pthread_rwlock_rdlock(&rwLock)
}
func unlock() {
pthread_rwlock_unlock(&rwLock)
}
}
/// A property wrapper that ensures atomic access to a value. IE only one thing can write at a time.
/// Multiple things can potentially read at the same time, just not during a write.
/// By using `pthread` to do the locking, this safer then using a `DispatchQueue/barrier` as there isn't a chance
/// of priority inversion.
@propertyWrapper
public final class Atomic<Value> {
private var value: Value
private let lock: Lock = PThreadRWLock()
public init(wrappedValue value: Value) {
self.value = value
}
public var wrappedValue: Value {
get {
self.lock.readLock()
defer { self.lock.unlock() }
return self.value
}
set {
self.lock.writeLock()
self.value = newValue
self.lock.unlock()
}
}
/// Provides a closure that will be called synchronously. This closure will be passed in the current value
/// and it is free to modify it. Any modifications will be saved back to the original value.
/// No other reads/writes will be allowed between when the closure is called and it returns.
public func mutate(_ closure: (inout Value) -> Void) {
self.lock.writeLock()
closure(&value)
self.lock.unlock()
}
}