How to apply numpy.linalg.norm to each row of a matrix?

后端 未结 4 545
鱼传尺愫
鱼传尺愫 2020-11-28 04:03

I have a 2D matrix and I want to take norm of each row. But when I use numpy.linalg.norm(X) directly, it takes the norm of the whole matrix.

I can take

相关标签:
4条回答
  • 2020-11-28 04:48

    Note that, as perimosocordiae shows, as of NumPy version 1.9, np.linalg.norm(x, axis=1) is the fastest way to compute the L2-norm.


    If you are computing an L2-norm, you could compute it directly (using the axis=-1 argument to sum along rows):

    np.sum(np.abs(x)**2,axis=-1)**(1./2)
    

    Lp-norms can be computed similarly of course.

    It is considerably faster than np.apply_along_axis, though perhaps not as convenient:

    In [48]: %timeit np.apply_along_axis(np.linalg.norm, 1, x)
    1000 loops, best of 3: 208 us per loop
    
    In [49]: %timeit np.sum(np.abs(x)**2,axis=-1)**(1./2)
    100000 loops, best of 3: 18.3 us per loop
    

    Other ord forms of norm can be computed directly too (with similar speedups):

    In [55]: %timeit np.apply_along_axis(lambda row:np.linalg.norm(row,ord=1), 1, x)
    1000 loops, best of 3: 203 us per loop
    
    In [54]: %timeit np.sum(abs(x), axis=-1)
    100000 loops, best of 3: 10.9 us per loop
    
    0 讨论(0)
  • 2020-11-28 04:48

    Much faster than the accepted answer is

    numpy.sqrt(numpy.einsum('ij,ij->i', a, a))
    

    Note the log-scale:


    Code to reproduce the plot:

    import numpy
    import perfplot
    
    
    def sum_sqrt(a):
        return numpy.sqrt(numpy.sum(numpy.abs(a)**2, axis=-1))
    
    
    def apply_norm_along_axis(a):
        return numpy.apply_along_axis(numpy.linalg.norm, 1, a)
    
    
    def norm_axis(a):
        return numpy.linalg.norm(a, axis=1)
    
    
    def einsum_sqrt(a):
        return numpy.sqrt(numpy.einsum('ij,ij->i', a, a))
    
    
    perfplot.show(
        setup=lambda n: numpy.random.rand(n, 3),
        kernels=[sum_sqrt, apply_norm_along_axis, norm_axis, einsum_sqrt],
        n_range=[2**k for k in range(20)],
        logx=True,
        logy=True,
        xlabel='len(a)'
        )
    
    0 讨论(0)
  • 2020-11-28 04:49

    Resurrecting an old question due to a numpy update. As of the 1.9 release, numpy.linalg.norm now accepts an axis argument. [code, documentation]

    This is the new fastest method in town:

    In [10]: x = np.random.random((500,500))
    
    In [11]: %timeit np.apply_along_axis(np.linalg.norm, 1, x)
    10 loops, best of 3: 21 ms per loop
    
    In [12]: %timeit np.sum(np.abs(x)**2,axis=-1)**(1./2)
    100 loops, best of 3: 2.6 ms per loop
    
    In [13]: %timeit np.linalg.norm(x, axis=1)
    1000 loops, best of 3: 1.4 ms per loop
    

    And to prove it's calculating the same thing:

    In [14]: np.allclose(np.linalg.norm(x, axis=1), np.sum(np.abs(x)**2,axis=-1)**(1./2))
    Out[14]: True
    
    0 讨论(0)
  • 2020-11-28 04:53

    Try the following:

    In [16]: numpy.apply_along_axis(numpy.linalg.norm, 1, a)
    Out[16]: array([ 5.38516481,  1.41421356,  5.38516481])
    

    where a is your 2D array.

    The above computes the L2 norm. For a different norm, you could use something like:

    In [22]: numpy.apply_along_axis(lambda row:numpy.linalg.norm(row,ord=1), 1, a)
    Out[22]: array([9, 2, 9])
    
    0 讨论(0)
提交回复
热议问题