I\'d like to create a program that runs multiple light threads, but limits itself to a constant, predefined number of concurrent running tasks, like this (but with no risk o
concurrent.futures.ThreadPoolExecutor.map
concurrent.futures.ThreadPoolExecutor
was mentioned at https://stackoverflow.com/a/19370282/895245 and here is an example of the map
method which is often the most convenient method.
.map()
is a parallel version of map()
: it reads all the input immediately, then runs tasks in parallel, and returns in the same order as the input.
Usage:
./concurrent_map_exception.py [nproc [min [max]]
concurrent_map_exception.py
import concurrent.futures
import sys
import time
def my_func(i):
time.sleep((abs(i) % 4) / 10.0)
return 10.0 / i
def my_get_work(min_, max_):
for i in range(min_, max_):
print('my_get_work: {}'.format(i))
yield i
# CLI.
argv_len = len(sys.argv)
if argv_len > 1:
nthreads = int(sys.argv[1])
if nthreads == 0:
nthreads = None
else:
nthreads = None
if argv_len > 2:
min_ = int(sys.argv[2])
else:
min_ = 1
if argv_len > 3:
max_ = int(sys.argv[3])
else:
max_ = 100
# Action.
with concurrent.futures.ProcessPoolExecutor(max_workers=nthreads) as executor:
for input, output in zip(
my_get_work(min_, max_),
executor.map(my_func, my_get_work(min_, max_))
):
print('result: {} {}'.format(input, output))
GitHub upstream.
So for example:
./concurrent_map_exception.py 1 1 5
gives:
my_get_work: 1
my_get_work: 2
my_get_work: 3
my_get_work: 4
my_get_work: 1
result: 1 10.0
my_get_work: 2
result: 2 5.0
my_get_work: 3
result: 3 3.3333333333333335
my_get_work: 4
result: 4 2.5
and:
./concurrent_map_exception.py 2 1 5
gives the same output but runs faster because we now have 2 processes, and:
./concurrent_map_exception.py 1 -5 5
gives:
my_get_work: -5
my_get_work: -4
my_get_work: -3
my_get_work: -2
my_get_work: -1
my_get_work: 0
my_get_work: 1
my_get_work: 2
my_get_work: 3
my_get_work: 4
my_get_work: -5
result: -5 -2.0
my_get_work: -4
result: -4 -2.5
my_get_work: -3
result: -3 -3.3333333333333335
my_get_work: -2
result: -2 -5.0
my_get_work: -1
result: -1 -10.0
my_get_work: 0
concurrent.futures.process._RemoteTraceback:
"""
Traceback (most recent call last):
File "/usr/lib/python3.6/concurrent/futures/process.py", line 175, in _process_worker
r = call_item.fn(*call_item.args, **call_item.kwargs)
File "/usr/lib/python3.6/concurrent/futures/process.py", line 153, in _process_chunk
return [fn(*args) for args in chunk]
File "/usr/lib/python3.6/concurrent/futures/process.py", line 153, in <listcomp>
return [fn(*args) for args in chunk]
File "./concurrent_map_exception.py", line 24, in my_func
return 10.0 / i
ZeroDivisionError: float division by zero
"""
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "./concurrent_map_exception.py", line 52, in <module>
executor.map(my_func, my_get_work(min_, max_))
File "/usr/lib/python3.6/concurrent/futures/process.py", line 366, in _chain_from_iterable_of_lists
for element in iterable:
File "/usr/lib/python3.6/concurrent/futures/_base.py", line 586, in result_iterator
yield fs.pop().result()
File "/usr/lib/python3.6/concurrent/futures/_base.py", line 432, in result
return self.__get_result()
File "/usr/lib/python3.6/concurrent/futures/_base.py", line 384, in __get_result
raise self._exception
ZeroDivisionError: float division by zero
So notice how it stops immediately on an exception.
Queue
example with error handling
Queue
was mentioned at https://stackoverflow.com/a/19369877/895245 but here is a full example.
Design goals:
concurrent.futures.ThreadPoolExecutor
is the nicest interface currently available in the stdlib that I've seen. However I could not find how to do all of the following:
because:
.map()
: reads all inputs at once and func
can only take on argument.submit()
: .shutdown()
executes until all futures finish, and there is no blocking .submit()
on max current work items. So how to avoid an ugly .cancel()
loop over all futures after first failure?Without further ado, here is my implementation. Test cases follow at the end of the script under __name__ == '__main__'
:
thread_pool.py
#!/usr/bin/env python3
'''
This file is MIT Licensed because I'm posting it on Stack Overflow:
https://stackoverflow.com/questions/19369724/the-right-way-to-limit-maximum-number-of-threads-running-at-once/55263676#55263676
'''
from typing import Any, Callable, Dict, Iterable, Union
import os
import queue
import sys
import threading
import time
import traceback
class ThreadPoolExitException(Exception):
'''
An object of this class may be raised by output_handler_function to
request early termination.
It is also raised by submit() if submit_raise_exit=True.
'''
pass
class ThreadPool:
'''
Start a pool of a limited number of threads to do some work.
This is similar to the stdlib concurrent, but I could not find
how to reach all my design goals with that implementation:
* the input function does not need to be modified
* limit the number of threads
* queue sizes closely follow number of threads
* if an exception happens, optionally stop soon afterwards
This class form allows to use your own while loops with submit().
Exit soon after the first failure happens:
....
python3 thread_pool.py 2 -10 20 handle_output_print
....
Sample output:
....
{'i': -9} -1.1111111111111112 None
{'i': -8} -1.25 None
{'i': -10} -1.0 None
{'i': -6} -1.6666666666666667 None
{'i': -7} -1.4285714285714286 None
{'i': -4} -2.5 None
{'i': -5} -2.0 None
{'i': -2} -5.0 None
{'i': -3} -3.3333333333333335 None
{'i': 0} None ZeroDivisionError('float division by zero')
{'i': -1} -10.0 None
{'i': 1} 10.0 None
{'i': 2} 5.0 None
work_function or handle_output raised:
Traceback (most recent call last):
File "thread_pool.py", line 181, in _func_runner
work_function_return = self.work_function(**work_function_input)
File "thread_pool.py", line 281, in work_function_maybe_raise
return 10.0 / i
ZeroDivisionError: float division by zero
work_function_input: {'i': 0}
work_function_return: None
....
Don't exit after first failure, run until end:
....
python3 thread_pool.py 2 -10 20 handle_output_print_no_exit
....
Store results in a queue for later inspection instead of printing immediately,
then print everything at the end:
....
python3 thread_pool.py 2 -10 20 handle_output_queue
....
Exit soon after the handle_output raise.
....
python3 thread_pool.py 2 -10 20 handle_output_raise
....
Relying on this interface to abort execution is discouraged, this should
usually only happen due to a programming error in the handler.
Test that the argument called "thread_id" is passed to work_function and printed:
....
python3 thread_pool.py 2 -10 20 handle_output_print thread_id
....
Test with, ThreadPoolExitException and submit_raise_exit=True, same behaviour handle_output_print
except for the different exit cause report:
....
python3 thread_pool.py 2 -10 20 handle_output_raise_exit_exception
....
'''
def __init__(
self,
work_function: Callable,
handle_output: Union[Callable[[Any,Any,Exception],Any],None] = None,
nthreads: Union[int,None] = None,
thread_id_arg: Union[str,None] = None,
submit_raise_exit: bool = False
):
'''
Start in a thread pool immediately.
join() must be called afterwards at some point.
:param work_function: main work function to be evaluated.
:param handle_output: called on work_function return values as they
are returned.
The function signature is:
....
handle_output(
work_function_input: Union[Dict,None],
work_function_return,
work_function_exception: Exception
) -> Union[Exception,None]
....
where work_function_exception the exception that work_function raised,
or None otherwise
The first non-None return value of a call to this function is returned by
submit(), get_handle_output_result() and join().
The intended semantic for this, is to return:
* on success:
** None to continue execution
** ThreadPoolExitException() to request stop execution
* if work_function_input or work_function_exception raise:
** the exception raised
The ThreadPool user can then optionally terminate execution early on error
or request with either:
* an explicit submit() return value check + break if a submit loop is used
* `with` + submit_raise_exit=True
Default: a handler that just returns `exception`, which can normally be used
by the submit loop to detect an error and exit immediately.
:param nthreads: number of threads to use. Default: nproc.
:param thread_id_arg: if not None, set the argument of work_function with this name
to a 0-indexed thread ID. This allows function calls to coordinate
usage of external resources such as files or ports.
:param submit_raise_exit: if True, submit() raises ThreadPoolExitException() if
get_handle_output_result() is not None.
'''
self.work_function = work_function
if handle_output is None:
handle_output = lambda input, output, exception: exception
self.handle_output = handle_output
if nthreads is None:
nthreads = len(os.sched_getaffinity(0))
self.thread_id_arg = thread_id_arg
self.submit_raise_exit = submit_raise_exit
self.nthreads = nthreads
self.handle_output_result = None
self.handle_output_result_lock = threading.Lock()
self.in_queue = queue.Queue(maxsize=nthreads)
self.threads = []
for i in range(self.nthreads):
thread = threading.Thread(
target=self._func_runner,
args=(i,)
)
self.threads.append(thread)
thread.start()
def __enter__(self):
'''
__exit__ automatically calls join() for you.
This is cool because it automatically ends the loop if an exception occurs.
But don't forget that errors may happen after the last submit was called, so you
likely want to check for that with get_handle_output_result() after the with.
'''
return self
def __exit__(self, exception_type, exception_value, exception_traceback):
self.join()
return exception_type is ThreadPoolExitException
def _func_runner(self, thread_id):
while True:
work_function_input = self.in_queue.get(block=True)
if work_function_input is None:
break
if self.thread_id_arg is not None:
work_function_input[self.thread_id_arg] = thread_id
try:
work_function_exception = None
work_function_return = self.work_function(**work_function_input)
except Exception as e:
work_function_exception = e
work_function_return = None
handle_output_exception = None
try:
handle_output_return = self.handle_output(
work_function_input,
work_function_return,
work_function_exception
)
except Exception as e:
handle_output_exception = e
handle_output_result = None
if handle_output_exception is not None:
handle_output_result = handle_output_exception
elif handle_output_return is not None:
handle_output_result = handle_output_return
if handle_output_result is not None and self.handle_output_result is None:
with self.handle_output_result_lock:
self.handle_output_result = (
work_function_input,
work_function_return,
handle_output_result
)
self.in_queue.task_done()
@staticmethod
def exception_traceback_string(exception):
'''
Helper to get the traceback from an exception object.
This is usually what you want to print if an error happens in a thread:
https://stackoverflow.com/questions/3702675/how-to-print-the-full-traceback-without-halting-the-program/56199295#56199295
'''
return ''.join(traceback.format_exception(
None, exception, exception.__traceback__)
)
def get_handle_output_result(self):
'''
:return: if a handle_output call has raised previously, return a tuple:
....
(work_function_input, work_function_return, exception_raised)
....
corresponding to the first such raise.
Otherwise, if a handle_output returned non-None, a tuple:
(work_function_input, work_function_return, handle_output_return)
Otherwise, None.
'''
return self.handle_output_result
def join(self):
'''
Request all threads to stop after they finish currently submitted work.
:return: same as get_handle_output_result()
'''
for thread in range(self.nthreads):
self.in_queue.put(None)
for thread in self.threads:
thread.join()
return self.get_handle_output_result()
def submit(
self,
work_function_input: Union[Dict,None] =None
):
'''
Submit work. Block if there is already enough work scheduled (~nthreads).
:return: the same as get_handle_output_result
'''
handle_output_result = self.get_handle_output_result()
if handle_output_result is not None and self.submit_raise_exit:
raise ThreadPoolExitException()
if work_function_input is None:
work_function_input = {}
self.in_queue.put(work_function_input)
return handle_output_result
if __name__ == '__main__':
def get_work(min_, max_):
'''
Generate simple range work for work_function.
'''
for i in range(min_, max_):
yield {'i': i}
def work_function_maybe_raise(i):
'''
The main function that will be evaluated.
It sleeps to simulate an IO operation.
'''
time.sleep((abs(i) % 4) / 10.0)
return 10.0 / i
def work_function_get_thread(i, thread_id):
time.sleep((abs(i) % 4) / 10.0)
return thread_id
def handle_output_print(input, output, exception):
'''
Print outputs and exit immediately on failure.
'''
print('{!r} {!r} {!r}'.format(input, output, exception))
return exception
def handle_output_print_no_exit(input, output, exception):
'''
Print outputs, don't exit on failure.
'''
print('{!r} {!r} {!r}'.format(input, output, exception))
out_queue = queue.Queue()
def handle_output_queue(input, output, exception):
'''
Store outputs in a queue for later usage.
'''
global out_queue
out_queue.put((input, output, exception))
return exception
def handle_output_raise(input, output, exception):
'''
Raise if input == 0, to test that execution
stops nicely if this raises.
'''
print('{!r} {!r} {!r}'.format(input, output, exception))
if input['i'] == 0:
raise Exception
def handle_output_raise_exit_exception(input, output, exception):
'''
Return a ThreadPoolExitException() if input == -5.
Return the work_function exception if it raised.
'''
print('{!r} {!r} {!r}'.format(input, output, exception))
if exception:
return exception
if output == 10.0 / -5:
return ThreadPoolExitException()
# CLI arguments.
argv_len = len(sys.argv)
if argv_len > 1:
nthreads = int(sys.argv[1])
if nthreads == 0:
nthreads = None
else:
nthreads = None
if argv_len > 2:
min_ = int(sys.argv[2])
else:
min_ = 1
if argv_len > 3:
max_ = int(sys.argv[3])
else:
max_ = 100
if argv_len > 4:
handle_output_funtion_string = sys.argv[4]
else:
handle_output_funtion_string = 'handle_output_print'
handle_output = eval(handle_output_funtion_string)
if argv_len > 5:
work_function = work_function_get_thread
thread_id_arg = sys.argv[5]
else:
work_function = work_function_maybe_raise
thread_id_arg = None
# Action.
if handle_output is handle_output_raise_exit_exception:
# `with` version with implicit join and submit raise
# immediately when desired with ThreadPoolExitException.
#
# This is the more safe and convenient and DRY usage if
# you can use `with`, so prefer it generally.
with ThreadPool(
work_function,
handle_output,
nthreads,
thread_id_arg,
submit_raise_exit=True
) as my_thread_pool:
for work in get_work(min_, max_):
my_thread_pool.submit(work)
handle_output_result = my_thread_pool.get_handle_output_result()
else:
# Explicit error checking in submit loop to exit immediately
# on error.
my_thread_pool = ThreadPool(
work_function,
handle_output,
nthreads,
thread_id_arg,
)
for work_function_input in get_work(min_, max_):
handle_output_result = my_thread_pool.submit(work_function_input)
if handle_output_result is not None:
break
handle_output_result = my_thread_pool.join()
if handle_output_result is not None:
work_function_input, work_function_return, exception = handle_output_result
if type(exception) is ThreadPoolExitException:
print('Early exit requested by handle_output with ThreadPoolExitException:')
else:
print('work_function or handle_output raised:')
print(ThreadPool.exception_traceback_string(exception), end='')
print('work_function_input: {!r}'.format(work_function_input))
print('work_function_return: {!r}'.format(work_function_return))
if handle_output == handle_output_queue:
while not out_queue.empty():
print(out_queue.get())
GitHub upstream.
Tested in Python 3.7.3.
semaphore is a variable or abstract data type that is used to control access to a common resource by multiple processes in a concurrent system such as a multiprogramming operating system; this can help you here.
threadLimiter = threading.BoundedSemaphore(maximumNumberOfThreads)
class MyThread(threading.Thread):
def run(self):
threadLimiter.acquire()
try:
self.Executemycode()
finally:
threadLimiter.release()
def Executemycode(self):
print(" Hello World!")
# <your code here>
This way you can easily limit the number of threads that will be executed concurrently during the program execution. Variable, 'maximumNumberOfThreads' can be used to define an upper limit on the maximum value of threads.
credits
For apply limitation on thread creating, follow this example (it really works):
import threading
import time
def some_process(thread_num):
count = 0
while count < 5:
time.sleep(0.5)
count += 1
print "%s: %s" % (thread_num, time.ctime(time.time()))
print 'number of alive threads:{}'.format(threading.active_count())
def create_thread():
try:
for i in range(1, 555): # trying to spawn 555 threads.
thread = threading.Thread(target=some_process, args=(i,))
thread.start()
if threading.active_count() == 100: # set maximum threads.
thread.join()
print threading.active_count() # number of alive threads.
except Exception as e:
print "Error: unable to start thread {}".format(e)
if __name__ == '__main__':
create_thread()
Or:
Another way to set a thread number checker mutex/lock such as below example:
import threading
import time
def some_process(thread_num):
count = 0
while count < 5:
time.sleep(0.5)
count += 1
# print "%s: %s" % (thread_num, time.ctime(time.time()))
print 'number of alive threads:{}'.format(threading.active_count())
def create_thread2(number_of_desire_thread ):
try:
for i in range(1, 555):
thread = threading.Thread(target=some_process, args=(i,)).start()
while number_of_desire_thread <= threading.active_count():
'''mutex for avoiding to additional thread creation.'''
pass
print 'unlock'
print threading.active_count() # number of alive threads.
except Exception as e:
print "Error: unable to start thread {}".format(e)
if __name__ == '__main__':
create_thread2(100)
It sounds like you want to implement the producer/consumer pattern with eight workers. Python has a Queue class for this purpose, and it is thread-safe.
Each worker should call get()
on the queue to retrieve a task. This call will block if no tasks are available, causing the worker to go idle until one becomes available. Then the worker should execute the task and finally call task_done()
on the queue.
You would put tasks in the queue by calling put()
on the queue.
From the main thread, you can call join()
on the queue to wait until all pending tasks have been completed.
This approach has the benefit that you are not creating and destroying threads, which is expensive. The worker threads will run continuously, but will be asleep when no tasks are in the queue, using zero CPU time.
(The linked documentation page has an example of this very pattern.)
It would be much easier to implement this as a thread pool or executor, using either multiprocessing.dummy.Pool
, or concurrent.futures.ThreadPoolExecutor
(or, if using Python 2.x, the backport futures). For example:
import concurrent
def f(arg):
print("Started a task. running=%s, arg=%s" % (running, arg))
for i in range(100000):
pass
print("Done")
with concurrent.futures.ThreadPoolExecutor(8) as executor:
while True:
arg = get_task()
executor.submit(f, arg)
Of course if you can change the pull-model get_task
to a push-model get_tasks
that, e.g., yields tasks one at a time, this is even simpler:
with concurrent.futures.ThreadPoolExecutor(8) as executor:
for arg in get_tasks():
executor.submit(f, arg)
When you run out of tasks (e.g., get_task
raises an exception, or get_tasks
runs dry), this will automatically tell the executor to stop after it drains the queue, wait for it to stop, and clean up everything.
I've seen that most commonly written like:
threads = [threading.Thread(target=f) for _ in range(8)]
for thread in threads:
thread.start()
...
for thread in threads:
thread.join()
If you want to maintain a fixed-size pool of running threads that process short-lived tasks than ask for new work, consider a solution built around Queues, like "How to wait until only the first thread is finished in Python".