I have a large dataframe (several million rows).
I want to be able to do a groupby operation on it, but just grouping by arbitrary consecutive (preferably equal-size
Use numpy's array_split():
import numpy as np
import pandas as pd
data = pd.DataFrame(np.random.rand(10, 3))
for chunk in np.array_split(data, 5):
assert len(chunk) == len(data) / 5
I'm not sure if this is exactly what you want, but I found these grouper functions on another SO thread fairly useful for doing a multiprocessor pool.
Here's a short example from that thread, which might do something like what you want:
import numpy as np
import pandas as pds
df = pds.DataFrame(np.random.rand(14,4), columns=['a', 'b', 'c', 'd'])
def chunker(seq, size):
return (seq[pos:pos + size] for pos in xrange(0, len(seq), size))
for i in chunker(df,5):
print i
Which gives you something like this:
a b c d
0 0.860574 0.059326 0.339192 0.786399
1 0.029196 0.395613 0.524240 0.380265
2 0.235759 0.164282 0.350042 0.877004
3 0.545394 0.881960 0.994079 0.721279
4 0.584504 0.648308 0.655147 0.511390
a b c d
5 0.276160 0.982803 0.451825 0.845363
6 0.728453 0.246870 0.515770 0.343479
7 0.971947 0.278430 0.006910 0.888512
8 0.044888 0.875791 0.842361 0.890675
9 0.200563 0.246080 0.333202 0.574488
a b c d
10 0.971125 0.106790 0.274001 0.960579
11 0.722224 0.575325 0.465267 0.258976
12 0.574039 0.258625 0.469209 0.886768
13 0.915423 0.713076 0.073338 0.622967
I hope that helps.
EDIT
In this case, I used this function with pool of processors in (approximately) this manner:
from multiprocessing import Pool
nprocs = 4
pool = Pool(nprocs)
for chunk in chunker(df, nprocs):
data = pool.map(myfunction, chunk)
data.domorestuff()
I assume this should be very similar to using the IPython distributed machinery, but I haven't tried it.
A sign of a good environment is many choices, so I'll add this from Anaconda Blaze, really using Odo
import blaze as bz
import pandas as pd
df = pd.DataFrame({'col1':[1,2,3,4,5], 'col2':[2,4,6,8,10]})
for chunk in bz.odo(df, target=bz.chunks(pd.DataFrame), chunksize=2):
# Do stuff with chunked dataframe
A generator version of the chunk function is presented below. Moreover this version works with custom index of the pd.DataFrame or pd.Series (e.g. float type index)
import numpy as np
import pandas as pd
df_sz = 14
df = pd.DataFrame(np.random.rand(df_sz,4),
index=np.linspace(0., 10., num=df_sz),
columns=['a', 'b', 'c', 'd']
)
def chunker(seq, size):
for pos in range(0, len(seq), size):
yield seq.iloc[pos:pos + size]
chunk_size = 6
for i in chunker(df, chunk_size):
print(i)
chnk = chunker(df, chunk_size)
print('\n', chnk)
print(next(chnk))
print(next(chnk))
print(next(chnk))
The output is
a b c d 0.000000 0.560627 0.665897 0.683055 0.611884 0.769231 0.241871 0.357080 0.841945 0.340778 1.538462 0.065009 0.234621 0.250644 0.552410 2.307692 0.431394 0.235463 0.755084 0.114852 3.076923 0.173748 0.189739 0.148856 0.031171 3.846154 0.772352 0.697762 0.557806 0.254476 a b c d 4.615385 0.901200 0.977844 0.250316 0.957408 5.384615 0.400939 0.520841 0.863015 0.177043 6.153846 0.356927 0.344220 0.863067 0.400573 6.923077 0.375417 0.156420 0.897889 0.810083 7.692308 0.666371 0.152800 0.482446 0.955556 8.461538 0.242711 0.421591 0.005223 0.200596 a b c d 9.230769 0.735748 0.402639 0.527825 0.595952 10.000000 0.420209 0.365231 0.966829 0.514409 - generator object chunker at 0x7f503c9d0ba0 First "next()": a b c d 0.000000 0.560627 0.665897 0.683055 0.611884 0.769231 0.241871 0.357080 0.841945 0.340778 1.538462 0.065009 0.234621 0.250644 0.552410 2.307692 0.431394 0.235463 0.755084 0.114852 3.076923 0.173748 0.189739 0.148856 0.031171 3.846154 0.772352 0.697762 0.557806 0.254476 Second "next()": a b c d 4.615385 0.901200 0.977844 0.250316 0.957408 5.384615 0.400939 0.520841 0.863015 0.177043 6.153846 0.356927 0.344220 0.863067 0.400573 6.923077 0.375417 0.156420 0.897889 0.810083 7.692308 0.666371 0.152800 0.482446 0.955556 8.461538 0.242711 0.421591 0.005223 0.200596 Third "next()": a b c d 9.230769 0.735748 0.402639 0.527825 0.595952 10.000000 0.420209 0.365231 0.966829 0.514409
In practice, you can't guarantee equal-sized chunks. The number of rows (N) might be prime, in which case you could only get equal-sized chunks at 1 or N. Because of this, real-world chunking typically uses a fixed size and allows for a smaller chunk at the end. I tend to pass an array to groupby
. Starting from:
>>> df = pd.DataFrame(np.random.rand(15, 5), index=[0]*15)
>>> df[0] = range(15)
>>> df
0 1 2 3 4
0 0 0.746300 0.346277 0.220362 0.172680
0 1 0.657324 0.687169 0.384196 0.214118
0 2 0.016062 0.858784 0.236364 0.963389
[...]
0 13 0.510273 0.051608 0.230402 0.756921
0 14 0.950544 0.576539 0.642602 0.907850
[15 rows x 5 columns]
where I've deliberately made the index uninformative by setting it to 0, we simply decide on our size (here 10) and integer-divide an array by it:
>>> df.groupby(np.arange(len(df))//10)
<pandas.core.groupby.DataFrameGroupBy object at 0xb208492c>
>>> for k,g in df.groupby(np.arange(len(df))//10):
... print(k,g)
...
0 0 1 2 3 4
0 0 0.746300 0.346277 0.220362 0.172680
0 1 0.657324 0.687169 0.384196 0.214118
0 2 0.016062 0.858784 0.236364 0.963389
[...]
0 8 0.241049 0.246149 0.241935 0.563428
0 9 0.493819 0.918858 0.193236 0.266257
[10 rows x 5 columns]
1 0 1 2 3 4
0 10 0.037693 0.370789 0.369117 0.401041
0 11 0.721843 0.862295 0.671733 0.605006
[...]
0 14 0.950544 0.576539 0.642602 0.907850
[5 rows x 5 columns]
Methods based on slicing the DataFrame can fail when the index isn't compatible with that, although you can always use .iloc[a:b]
to ignore the index values and access data by position.
import pandas as pd
def batch(iterable, batch_number=10):
"""
split an iterable into mini batch with batch length of batch_number
supports batch of a pandas dataframe
usage:
for i in batch([1,2,3,4,5], batch_number=2):
print(i)
for idx, mini_data in enumerate(batch(df, batch_number=10)):
print(idx)
print(mini_data)
"""
l = len(iterable)
for idx in range(0, l, batch_number):
if isinstance(iterable, pd.DataFrame):
# dataframe can't split index label, should iter according index
yield iterable.iloc[idx:min(idx+batch_number, l)]
else:
yield iterable[idx:min(idx+batch_number, l)]