How to copy data from a numpy array to another

前端 未结 7 1661
逝去的感伤
逝去的感伤 2020-11-28 03:07

What is the fastest way to copy data from array b to array a, without modifying the address of array a. I need this because an external library (PyFFTW) uses a pointer to my

相关标签:
7条回答
  • 2020-11-28 03:36

    you can easy use:

    b = 1*a
    

    this is the fastest way, but also have some problems. If you don't define directly the dtype of a and also doesn't check the dtype of b you can get into trouble. For example:

    a = np.arange(10)        # dtype = int64
    b = 1*a                  # dtype = int64
    
    a = np.arange(10.)       # dtype = float64
    b = 1*a                  # dtype = float64
    
    a = np.arange(10)        # dtype = int64
    b = 1. * a               # dtype = float64
    

    I hope, I could make the point clear. Sometimes you will have a data type change with just one little operation.

    0 讨论(0)
  • 2020-11-28 03:40

    NumPy version 1.7 has the numpy.copyto function that does what you are looking for:

    numpy.copyto(dst, src)

    Copies values from one array to another, broadcasting as necessary.

    See: https://docs.scipy.org/doc/numpy/reference/generated/numpy.copyto.html

    0 讨论(0)
  • 2020-11-28 03:41

    Why not to use

    a = 0 + b
    

    I think it is similar to previous multiplication but might be simpler.

    0 讨论(0)
  • 2020-11-28 03:42
    a = numpy.array(b)
    

    is even faster than the suggested solutions up to numpy v1.6 and makes a copy of the array as well. I could however not test it against copyto(a,b), since I don't have the most recent version of numpy.

    0 讨论(0)
  • 2020-11-28 03:48

    To answer your question, I played with some variants and profiled them.

    Conclusion: to copy data from a numpy array to another use one of the built-in numpy functions numpy.array(src) or numpy.copyto(dst, src) wherever possible.

    (But always choose the later if dst's memory is already allocated, to reuse the memory. See profiling at the end of the post.)

    profiling setup

    import timeit
    import numpy as np
    import pandas as pd
    from IPython.display import display
    
    def profile_this(methods, setup='', niter=10 ** 4, p_globals=None, **kwargs):
        if p_globals is not None:
            print('globals: {0}, tested {1:.0e} times'.format(p_globals, niter))
        timings = np.array([timeit.timeit(method, setup=setup, number=niter,
                                          globals=p_globals, **kwargs) for 
                            method in methods])
        ranking = np.argsort(timings)
        timings = np.array(timings)[ranking]
        methods = np.array(methods)[ranking]
        speedups = np.amax(timings) / timings
    
        pd.set_option('html', False)
        data = {'time (s)': timings,
                'speedup': ['{:.2f}x'.format(s) if 1 != s else '' for s in speedups],
                'methods': methods}
        data_frame = pd.DataFrame(data, columns=['time (s)', 'speedup', 'methods'])
    
        display(data_frame)
        print()
    

    profiling code

    setup = '''import numpy as np; x = np.random.random(n)'''
    methods = (
        '''y = np.zeros(n, dtype=x.dtype); y[:] = x''',
        '''y = np.zeros_like(x); y[:] = x''',
        '''y = np.empty(n, dtype=x.dtype); y[:] = x''',
        '''y = np.empty_like(x); y[:] = x''',
        '''y = np.copy(x)''',
        '''y = x.astype(x.dtype)''',
        '''y = 1*x''',
        '''y = np.empty_like(x); np.copyto(y, x)''',
        '''y = np.empty_like(x); np.copyto(y, x, casting='no')''',
        '''y = np.empty(n)\nfor i in range(x.size):\n\ty[i] = x[i]'''
    )
    
    for n, it in ((2, 6), (3, 6), (3.8, 6), (4, 6), (5, 5), (6, 4.5)):
        profile_this(methods[:-1:] if n > 2 else methods, setup, 
                     niter=int(10 ** it), p_globals={'n': int(10 ** n)})
    

    results for Windows 7 on Intel i7 CPU, CPython v3.5.0, numpy v1.10.1.

    globals: {'n': 100}, tested 1e+06 times
    
         time (s) speedup                                            methods
    0    0.386908  33.76x                                    y = np.array(x)
    1    0.496475  26.31x                              y = x.astype(x.dtype)
    2    0.567027  23.03x              y = np.empty_like(x); np.copyto(y, x)
    3    0.666129  19.61x                     y = np.empty_like(x); y[:] = x
    4    0.967086  13.51x                                            y = 1*x
    5    1.067240  12.24x  y = np.empty_like(x); np.copyto(y, x, casting=...
    6    1.235198  10.57x                                     y = np.copy(x)
    7    1.624535   8.04x           y = np.zeros(n, dtype=x.dtype); y[:] = x
    8    1.626120   8.03x           y = np.empty(n, dtype=x.dtype); y[:] = x
    9    3.569372   3.66x                     y = np.zeros_like(x); y[:] = x
    10  13.061154          y = np.empty(n)\nfor i in range(x.size):\n\ty[...
    
    
    globals: {'n': 1000}, tested 1e+06 times
    
       time (s) speedup                                            methods
    0  0.666237   6.10x                              y = x.astype(x.dtype)
    1  0.740594   5.49x              y = np.empty_like(x); np.copyto(y, x)
    2  0.755246   5.39x                                    y = np.array(x)
    3  1.043631   3.90x                     y = np.empty_like(x); y[:] = x
    4  1.398793   2.91x                                            y = 1*x
    5  1.434299   2.84x  y = np.empty_like(x); np.copyto(y, x, casting=...
    6  1.544769   2.63x                                     y = np.copy(x)
    7  1.873119   2.17x           y = np.empty(n, dtype=x.dtype); y[:] = x
    8  2.355593   1.73x           y = np.zeros(n, dtype=x.dtype); y[:] = x
    9  4.067133                             y = np.zeros_like(x); y[:] = x
    
    
    globals: {'n': 6309}, tested 1e+06 times
    
       time (s) speedup                                            methods
    0  2.338428   3.05x                                    y = np.array(x)
    1  2.466636   2.89x                              y = x.astype(x.dtype)
    2  2.561535   2.78x              y = np.empty_like(x); np.copyto(y, x)
    3  2.603601   2.74x                     y = np.empty_like(x); y[:] = x
    4  3.005610   2.37x  y = np.empty_like(x); np.copyto(y, x, casting=...
    5  3.215863   2.22x                                     y = np.copy(x)
    6  3.249763   2.19x                                            y = 1*x
    7  3.661599   1.95x           y = np.empty(n, dtype=x.dtype); y[:] = x
    8  6.344077   1.12x           y = np.zeros(n, dtype=x.dtype); y[:] = x
    9  7.133050                             y = np.zeros_like(x); y[:] = x
    
    
    globals: {'n': 10000}, tested 1e+06 times
    
       time (s) speedup                                            methods
    0  3.421806   2.82x                                    y = np.array(x)
    1  3.569501   2.71x                              y = x.astype(x.dtype)
    2  3.618747   2.67x              y = np.empty_like(x); np.copyto(y, x)
    3  3.708604   2.61x                     y = np.empty_like(x); y[:] = x
    4  4.150505   2.33x  y = np.empty_like(x); np.copyto(y, x, casting=...
    5  4.402126   2.19x                                     y = np.copy(x)
    6  4.917966   1.96x           y = np.empty(n, dtype=x.dtype); y[:] = x
    7  4.941269   1.96x                                            y = 1*x
    8  8.925884   1.08x           y = np.zeros(n, dtype=x.dtype); y[:] = x
    9  9.661437                             y = np.zeros_like(x); y[:] = x
    
    
    globals: {'n': 100000}, tested 1e+05 times
    
        time (s) speedup                                            methods
    0   3.858588   2.63x                              y = x.astype(x.dtype)
    1   3.873989   2.62x                                    y = np.array(x)
    2   3.896584   2.60x              y = np.empty_like(x); np.copyto(y, x)
    3   3.919729   2.58x  y = np.empty_like(x); np.copyto(y, x, casting=...
    4   3.948563   2.57x                     y = np.empty_like(x); y[:] = x
    5   4.000521   2.53x                                     y = np.copy(x)
    6   4.087255   2.48x           y = np.empty(n, dtype=x.dtype); y[:] = x
    7   4.803606   2.11x                                            y = 1*x
    8   6.723291   1.51x                     y = np.zeros_like(x); y[:] = x
    9  10.131983                   y = np.zeros(n, dtype=x.dtype); y[:] = x
    
    
    globals: {'n': 1000000}, tested 3e+04 times
    
         time (s) speedup                                            methods
    0   85.625484   1.24x                     y = np.empty_like(x); y[:] = x
    1   85.693316   1.24x              y = np.empty_like(x); np.copyto(y, x)
    2   85.790064   1.24x  y = np.empty_like(x); np.copyto(y, x, casting=...
    3   86.342230   1.23x           y = np.empty(n, dtype=x.dtype); y[:] = x
    4   86.954862   1.22x           y = np.zeros(n, dtype=x.dtype); y[:] = x
    5   89.503368   1.18x                                    y = np.array(x)
    6   91.986177   1.15x                                            y = 1*x
    7   95.216021   1.11x                                     y = np.copy(x)
    8  100.524358   1.05x                              y = x.astype(x.dtype)
    9  106.045746                             y = np.zeros_like(x); y[:] = x


    Also, see results for a variant of the profiling where the destination's memory is already pre-allocated during value copying, since y = np.empty_like(x) is part of the setup:

    globals: {'n': 100}, tested 1e+06 times
    
       time (s) speedup                        methods
    0  0.328492   2.33x                np.copyto(y, x)
    1  0.384043   1.99x                y = np.array(x)
    2  0.405529   1.89x                       y[:] = x
    3  0.764625          np.copyto(y, x, casting='no')
    
    
    globals: {'n': 1000}, tested 1e+06 times
    
       time (s) speedup                        methods
    0  0.453094   1.95x                np.copyto(y, x)
    1  0.537594   1.64x                       y[:] = x
    2  0.770695   1.15x                y = np.array(x)
    3  0.884261          np.copyto(y, x, casting='no')
    
    
    globals: {'n': 6309}, tested 1e+06 times
    
       time (s) speedup                        methods
    0  2.125426   1.20x                np.copyto(y, x)
    1  2.182111   1.17x                       y[:] = x
    2  2.364018   1.08x                y = np.array(x)
    3  2.553323          np.copyto(y, x, casting='no')
    
    
    globals: {'n': 10000}, tested 1e+06 times
    
       time (s) speedup                        methods
    0  3.196402   1.13x                np.copyto(y, x)
    1  3.523396   1.02x                       y[:] = x
    2  3.531007   1.02x                y = np.array(x)
    3  3.597598          np.copyto(y, x, casting='no')
    
    
    globals: {'n': 100000}, tested 1e+05 times
    
       time (s) speedup                        methods
    0  3.862123   1.01x                np.copyto(y, x)
    1  3.863693   1.01x                y = np.array(x)
    2  3.873194   1.01x                       y[:] = x
    3  3.909018          np.copyto(y, x, casting='no')

    0 讨论(0)
  • 2020-11-28 03:52

    I believe

    a = numpy.empty_like (b)
    a[:] = b
    

    will make a deep copy quickly. As Funsi mentions, recent versions of numpy also have the copyto function.

    0 讨论(0)
提交回复
热议问题