I have constructed two dataframes. How can we join multiple Spark dataframes ?
For Example :
PersonDf
, ProfileDf
with a common col
Apart from my above answer I tried to demonstrate all the spark joins with same case classes using spark 2.x here is my linked in article with full examples and explanation .
All join types : Default inner
. Must be one of:
inner
, cross
, outer
, full
, full_outer
, left
, left_outer
, right
, right_outer
, left_semi
, left_anti
.
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
/**
* @author : Ram Ghadiyaram
*/
object SparkJoinTypesDemo extends App {
private[this] implicit val spark = SparkSession.builder().master("local[*]").getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
case class Person(name: String, age: Int, personid: Int)
case class Profile(profileName: String, personid: Int, profileDescription: String)
/**
* * @param joinType Type of join to perform. Default `inner`. Must be one of:
* * `inner`, `cross`, `outer`, `full`, `full_outer`, `left`, `left_outer`,
* * `right`, `right_outer`, `left_semi`, `left_anti`.
*/
val joinTypes = Seq(
"inner"
, "outer"
, "full"
, "full_outer"
, "left"
, "left_outer"
, "right"
, "right_outer"
, "left_semi"
, "left_anti"
//, "cross"
)
val df1 = spark.sqlContext.createDataFrame(
Person("Nataraj", 45, 2)
:: Person("Srinivas", 45, 5)
:: Person("Ashik", 22, 9)
:: Person("Deekshita", 22, 8)
:: Person("Siddhika", 22, 4)
:: Person("Madhu", 22, 3)
:: Person("Meghna", 22, 2)
:: Person("Snigdha", 22, 2)
:: Person("Harshita", 22, 6)
:: Person("Ravi", 42, 0)
:: Person("Ram", 42, 9)
:: Person("Chidananda Raju", 35, 9)
:: Person("Sreekanth Doddy", 29, 9)
:: Nil)
val df2 = spark.sqlContext.createDataFrame(
Profile("Spark", 2, "SparkSQLMaster")
:: Profile("Spark", 5, "SparkGuru")
:: Profile("Spark", 9, "DevHunter")
:: Profile("Spark", 3, "Evangelist")
:: Profile("Spark", 0, "Committer")
:: Profile("Spark", 1, "All Rounder")
:: Nil
)
val df_asPerson = df1.as("dfperson")
val df_asProfile = df2.as("dfprofile")
val joined_df = df_asPerson.join(
df_asProfile
, col("dfperson.personid") === col("dfprofile.personid")
, "inner")
println("First example inner join ")
// you can do alias to refer column name with aliases to increase readability
joined_df.select(
col("dfperson.name")
, col("dfperson.age")
, col("dfprofile.profileName")
, col("dfprofile.profileDescription"))
.show
println("all joins in a loop")
joinTypes foreach { joinType =>
println(s"${joinType.toUpperCase()} JOIN")
df_asPerson.join(right = df_asProfile, usingColumns = Seq("personid"), joinType = joinType)
.orderBy("personid")
.show()
}
println(
"""
|Till 1.x cross join is : df_asPerson.join(df_asProfile)
|
| Explicit Cross Join in 2.x :
| http://blog.madhukaraphatak.com/migrating-to-spark-two-part-4/
| Cartesian joins are very expensive without an extra filter that can be pushed down.
|
| cross join or cartesian product
|
|
""".stripMargin)
val crossJoinDf = df_asPerson.crossJoin(right = df_asProfile)
crossJoinDf.show(200, false)
println(crossJoinDf.explain())
println(crossJoinDf.count)
println("createOrReplaceTempView example ")
println(
"""
|Creates a local temporary view using the given name. The lifetime of this
| temporary view is tied to the [[SparkSession]] that was used to create this Dataset.
""".stripMargin)
df_asPerson.createOrReplaceTempView("dfperson");
df_asProfile.createOrReplaceTempView("dfprofile")
val sql =
s"""
|SELECT dfperson.name
|, dfperson.age
|, dfprofile.profileDescription
| FROM dfperson JOIN dfprofile
| ON dfperson.personid == dfprofile.personid
""".stripMargin
println(s"createOrReplaceTempView sql $sql")
val sqldf = spark.sql(sql)
sqldf.show
println(
"""
|
|**** EXCEPT DEMO ***
|
""".stripMargin)
println(" df_asPerson.except(df_asProfile) Except demo")
df_asPerson.except(df_asProfile).show
println(" df_asProfile.except(df_asPerson) Except demo")
df_asProfile.except(df_asPerson).show
}
Result :
First example inner join +---------------+---+-----------+------------------+ | name|age|profileName|profileDescription| +---------------+---+-----------+------------------+ | Nataraj| 45| Spark| SparkSQLMaster| | Srinivas| 45| Spark| SparkGuru| | Ashik| 22| Spark| DevHunter| | Madhu| 22| Spark| Evangelist| | Meghna| 22| Spark| SparkSQLMaster| | Snigdha| 22| Spark| SparkSQLMaster| | Ravi| 42| Spark| Committer| | Ram| 42| Spark| DevHunter| |Chidananda Raju| 35| Spark| DevHunter| |Sreekanth Doddy| 29| Spark| DevHunter| +---------------+---+-----------+------------------+ all joins in a loop INNER JOIN +--------+---------------+---+-----------+------------------+ |personid| name|age|profileName|profileDescription| +--------+---------------+---+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 5| Srinivas| 45| Spark| SparkGuru| | 9| Ram| 42| Spark| DevHunter| | 9| Ashik| 22| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9|Sreekanth Doddy| 29| Spark| DevHunter| +--------+---------------+---+-----------+------------------+ OUTER JOIN +--------+---------------+----+-----------+------------------+ |personid| name| age|profileName|profileDescription| +--------+---------------+----+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 1| null|null| Spark| All Rounder| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 4| Siddhika| 22| null| null| | 5| Srinivas| 45| Spark| SparkGuru| | 6| Harshita| 22| null| null| | 8| Deekshita| 22| null| null| | 9| Ashik| 22| Spark| DevHunter| | 9| Ram| 42| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9|Sreekanth Doddy| 29| Spark| DevHunter| +--------+---------------+----+-----------+------------------+ FULL JOIN +--------+---------------+----+-----------+------------------+ |personid| name| age|profileName|profileDescription| +--------+---------------+----+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 1| null|null| Spark| All Rounder| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 4| Siddhika| 22| null| null| | 5| Srinivas| 45| Spark| SparkGuru| | 6| Harshita| 22| null| null| | 8| Deekshita| 22| null| null| | 9| Ashik| 22| Spark| DevHunter| | 9| Ram| 42| Spark| DevHunter| | 9|Sreekanth Doddy| 29| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| +--------+---------------+----+-----------+------------------+ FULL_OUTER JOIN +--------+---------------+----+-----------+------------------+ |personid| name| age|profileName|profileDescription| +--------+---------------+----+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 1| null|null| Spark| All Rounder| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 4| Siddhika| 22| null| null| | 5| Srinivas| 45| Spark| SparkGuru| | 6| Harshita| 22| null| null| | 8| Deekshita| 22| null| null| | 9| Ashik| 22| Spark| DevHunter| | 9| Ram| 42| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9|Sreekanth Doddy| 29| Spark| DevHunter| +--------+---------------+----+-----------+------------------+ LEFT JOIN +--------+---------------+---+-----------+------------------+ |personid| name|age|profileName|profileDescription| +--------+---------------+---+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 4| Siddhika| 22| null| null| | 5| Srinivas| 45| Spark| SparkGuru| | 6| Harshita| 22| null| null| | 8| Deekshita| 22| null| null| | 9| Ram| 42| Spark| DevHunter| | 9| Ashik| 22| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9|Sreekanth Doddy| 29| Spark| DevHunter| +--------+---------------+---+-----------+------------------+ LEFT_OUTER JOIN +--------+---------------+---+-----------+------------------+ |personid| name|age|profileName|profileDescription| +--------+---------------+---+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 4| Siddhika| 22| null| null| | 5| Srinivas| 45| Spark| SparkGuru| | 6| Harshita| 22| null| null| | 8| Deekshita| 22| null| null| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9|Sreekanth Doddy| 29| Spark| DevHunter| | 9| Ashik| 22| Spark| DevHunter| | 9| Ram| 42| Spark| DevHunter| +--------+---------------+---+-----------+------------------+ RIGHT JOIN +--------+---------------+----+-----------+------------------+ |personid| name| age|profileName|profileDescription| +--------+---------------+----+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 1| null|null| Spark| All Rounder| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 5| Srinivas| 45| Spark| SparkGuru| | 9|Sreekanth Doddy| 29| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9| Ram| 42| Spark| DevHunter| | 9| Ashik| 22| Spark| DevHunter| +--------+---------------+----+-----------+------------------+ RIGHT_OUTER JOIN +--------+---------------+----+-----------+------------------+ |personid| name| age|profileName|profileDescription| +--------+---------------+----+-----------+------------------+ | 0| Ravi| 42| Spark| Committer| | 1| null|null| Spark| All Rounder| | 2| Meghna| 22| Spark| SparkSQLMaster| | 2| Snigdha| 22| Spark| SparkSQLMaster| | 2| Nataraj| 45| Spark| SparkSQLMaster| | 3| Madhu| 22| Spark| Evangelist| | 5| Srinivas| 45| Spark| SparkGuru| | 9|Sreekanth Doddy| 29| Spark| DevHunter| | 9| Ashik| 22| Spark| DevHunter| | 9|Chidananda Raju| 35| Spark| DevHunter| | 9| Ram| 42| Spark| DevHunter| +--------+---------------+----+-----------+------------------+ LEFT_SEMI JOIN +--------+---------------+---+ |personid| name|age| +--------+---------------+---+ | 0| Ravi| 42| | 2| Nataraj| 45| | 2| Meghna| 22| | 2| Snigdha| 22| | 3| Madhu| 22| | 5| Srinivas| 45| | 9|Chidananda Raju| 35| | 9|Sreekanth Doddy| 29| | 9| Ram| 42| | 9| Ashik| 22| +--------+---------------+---+ LEFT_ANTI JOIN +--------+---------+---+ |personid| name|age| +--------+---------+---+ | 4| Siddhika| 22| | 6| Harshita| 22| | 8|Deekshita| 22| +--------+---------+---+ Till 1.x Cross join is : `df_asPerson.join(df_asProfile)` Explicit Cross Join in 2.x : http://blog.madhukaraphatak.com/migrating-to-spark-two-part-4/ Cartesian joins are very expensive without an extra filter that can be pushed down. Cross join or Cartesian product +---------------+---+--------+-----------+--------+------------------+ |name |age|personid|profileName|personid|profileDescription| +---------------+---+--------+-----------+--------+------------------+ |Nataraj |45 |2 |Spark |2 |SparkSQLMaster | |Nataraj |45 |2 |Spark |5 |SparkGuru | |Nataraj |45 |2 |Spark |9 |DevHunter | |Nataraj |45 |2 |Spark |3 |Evangelist | |Nataraj |45 |2 |Spark |0 |Committer | |Nataraj |45 |2 |Spark |1 |All Rounder | |Srinivas |45 |5 |Spark |2 |SparkSQLMaster | |Srinivas |45 |5 |Spark |5 |SparkGuru | |Srinivas |45 |5 |Spark |9 |DevHunter | |Srinivas |45 |5 |Spark |3 |Evangelist | |Srinivas |45 |5 |Spark |0 |Committer | |Srinivas |45 |5 |Spark |1 |All Rounder | |Ashik |22 |9 |Spark |2 |SparkSQLMaster | |Ashik |22 |9 |Spark |5 |SparkGuru | |Ashik |22 |9 |Spark |9 |DevHunter | |Ashik |22 |9 |Spark |3 |Evangelist | |Ashik |22 |9 |Spark |0 |Committer | |Ashik |22 |9 |Spark |1 |All Rounder | |Deekshita |22 |8 |Spark |2 |SparkSQLMaster | |Deekshita |22 |8 |Spark |5 |SparkGuru | |Deekshita |22 |8 |Spark |9 |DevHunter | |Deekshita |22 |8 |Spark |3 |Evangelist | |Deekshita |22 |8 |Spark |0 |Committer | |Deekshita |22 |8 |Spark |1 |All Rounder | |Siddhika |22 |4 |Spark |2 |SparkSQLMaster | |Siddhika |22 |4 |Spark |5 |SparkGuru | |Siddhika |22 |4 |Spark |9 |DevHunter | |Siddhika |22 |4 |Spark |3 |Evangelist | |Siddhika |22 |4 |Spark |0 |Committer | |Siddhika |22 |4 |Spark |1 |All Rounder | |Madhu |22 |3 |Spark |2 |SparkSQLMaster | |Madhu |22 |3 |Spark |5 |SparkGuru | |Madhu |22 |3 |Spark |9 |DevHunter | |Madhu |22 |3 |Spark |3 |Evangelist | |Madhu |22 |3 |Spark |0 |Committer | |Madhu |22 |3 |Spark |1 |All Rounder | |Meghna |22 |2 |Spark |2 |SparkSQLMaster | |Meghna |22 |2 |Spark |5 |SparkGuru | |Meghna |22 |2 |Spark |9 |DevHunter | |Meghna |22 |2 |Spark |3 |Evangelist | |Meghna |22 |2 |Spark |0 |Committer | |Meghna |22 |2 |Spark |1 |All Rounder | |Snigdha |22 |2 |Spark |2 |SparkSQLMaster | |Snigdha |22 |2 |Spark |5 |SparkGuru | |Snigdha |22 |2 |Spark |9 |DevHunter | |Snigdha |22 |2 |Spark |3 |Evangelist | |Snigdha |22 |2 |Spark |0 |Committer | |Snigdha |22 |2 |Spark |1 |All Rounder | |Harshita |22 |6 |Spark |2 |SparkSQLMaster | |Harshita |22 |6 |Spark |5 |SparkGuru | |Harshita |22 |6 |Spark |9 |DevHunter | |Harshita |22 |6 |Spark |3 |Evangelist | |Harshita |22 |6 |Spark |0 |Committer | |Harshita |22 |6 |Spark |1 |All Rounder | |Ravi |42 |0 |Spark |2 |SparkSQLMaster | |Ravi |42 |0 |Spark |5 |SparkGuru | |Ravi |42 |0 |Spark |9 |DevHunter | |Ravi |42 |0 |Spark |3 |Evangelist | |Ravi |42 |0 |Spark |0 |Committer | |Ravi |42 |0 |Spark |1 |All Rounder | |Ram |42 |9 |Spark |2 |SparkSQLMaster | |Ram |42 |9 |Spark |5 |SparkGuru | |Ram |42 |9 |Spark |9 |DevHunter | |Ram |42 |9 |Spark |3 |Evangelist | |Ram |42 |9 |Spark |0 |Committer | |Ram |42 |9 |Spark |1 |All Rounder | |Chidananda Raju|35 |9 |Spark |2 |SparkSQLMaster | |Chidananda Raju|35 |9 |Spark |5 |SparkGuru | |Chidananda Raju|35 |9 |Spark |9 |DevHunter | |Chidananda Raju|35 |9 |Spark |3 |Evangelist | |Chidananda Raju|35 |9 |Spark |0 |Committer | |Chidananda Raju|35 |9 |Spark |1 |All Rounder | |Sreekanth Doddy|29 |9 |Spark |2 |SparkSQLMaster | |Sreekanth Doddy|29 |9 |Spark |5 |SparkGuru | |Sreekanth Doddy|29 |9 |Spark |9 |DevHunter | |Sreekanth Doddy|29 |9 |Spark |3 |Evangelist | |Sreekanth Doddy|29 |9 |Spark |0 |Committer | |Sreekanth Doddy|29 |9 |Spark |1 |All Rounder | +---------------+---+--------+-----------+--------+------------------+ == Physical Plan == BroadcastNestedLoopJoin BuildRight, Cross :- LocalTableScan [name#0, age#1, personid#2] +- BroadcastExchange IdentityBroadcastMode +- LocalTableScan [profileName#7, personid#8, profileDescription#9] () 78 createOrReplaceTempView example Creates a local temporary view using the given name. The lifetime of this temporary view is tied to the [[SparkSession]] that was used to create this Dataset. createOrReplaceTempView sql SELECT dfperson.name , dfperson.age , dfprofile.profileDescription FROM dfperson JOIN dfprofile ON dfperson.personid == dfprofile.personid +---------------+---+------------------+ | name|age|profileDescription| +---------------+---+------------------+ | Nataraj| 45| SparkSQLMaster| | Srinivas| 45| SparkGuru| | Ashik| 22| DevHunter| | Madhu| 22| Evangelist| | Meghna| 22| SparkSQLMaster| | Snigdha| 22| SparkSQLMaster| | Ravi| 42| Committer| | Ram| 42| DevHunter| |Chidananda Raju| 35| DevHunter| |Sreekanth Doddy| 29| DevHunter| +---------------+---+------------------+ **** EXCEPT DEMO *** df_asPerson.except(df_asProfile) Except demo +---------------+---+--------+ | name|age|personid| +---------------+---+--------+ | Ashik| 22| 9| | Harshita| 22| 6| | Madhu| 22| 3| | Ram| 42| 9| | Ravi| 42| 0| |Chidananda Raju| 35| 9| | Siddhika| 22| 4| | Srinivas| 45| 5| |Sreekanth Doddy| 29| 9| | Deekshita| 22| 8| | Meghna| 22| 2| | Snigdha| 22| 2| | Nataraj| 45| 2| +---------------+---+--------+ df_asProfile.except(df_asPerson) Except demo +-----------+--------+------------------+ |profileName|personid|profileDescription| +-----------+--------+------------------+ | Spark| 5| SparkGuru| | Spark| 9| DevHunter| | Spark| 2| SparkSQLMaster| | Spark| 3| Evangelist| | Spark| 0| Committer| | Spark| 1| All Rounder| +-----------+--------+------------------+
As discussed above these are the venn diagrams of all the joins.
you can use
val resultDf = PersonDf.join(ProfileDf, PersonDf("personId") === ProfileDf("personId"))
or shorter and more flexible (as you can easely specify more than 1 columns for joining)
val resultDf = PersonDf.join(ProfileDf,Seq("personId"))
One way
// join type can be inner, left, right, fullouter
val mergedDf = df1.join(df2, Seq("keyCol"), "inner")
// keyCol can be multiple column names seperated by comma
val mergedDf = df1.join(df2, Seq("keyCol1", "keyCol2"), "left")
Another way
import spark.implicits._
val mergedDf = df1.as("d1").join(df2.as("d2"), ($"d1.colName" === $"d2.colName"))
// to select specific columns as output
val mergedDf = df1.as("d1").join(df2.as("d2"), ($"d1.colName" === $"d2.colName")).select($"d1.*", $"d2.anotherColName")
You can use case class to prepare sample dataset ...
which is optional for ex: you can get DataFrame
from hiveContext.sql
as well..
import org.apache.spark.sql.functions.col
case class Person(name: String, age: Int, personid : Int)
case class Profile(name: String, personid : Int , profileDescription: String)
val df1 = sqlContext.createDataFrame(
Person("Bindu",20, 2)
:: Person("Raphel",25, 5)
:: Person("Ram",40, 9):: Nil)
val df2 = sqlContext.createDataFrame(
Profile("Spark",2, "SparkSQLMaster")
:: Profile("Spark",5, "SparkGuru")
:: Profile("Spark",9, "DevHunter"):: Nil
)
// you can do alias to refer column name with aliases to increase readablity
val df_asPerson = df1.as("dfperson")
val df_asProfile = df2.as("dfprofile")
val joined_df = df_asPerson.join(
df_asProfile
, col("dfperson.personid") === col("dfprofile.personid")
, "inner")
joined_df.select(
col("dfperson.name")
, col("dfperson.age")
, col("dfprofile.name")
, col("dfprofile.profileDescription"))
.show
sample Temp table approach which I don't like personally...
The reason to use the registerTempTable( tableName ) method for a DataFrame, is so that in addition to being able to use the Spark-provided methods of a DataFrame, you can also issue SQL queries via the sqlContext.sql( sqlQuery ) method, that use that DataFrame as an SQL table. The tableName parameter specifies the table name to use for that DataFrame in the SQL queries.
df_asPerson.registerTempTable("dfperson");
df_asProfile.registerTempTable("dfprofile")
sqlContext.sql("""SELECT dfperson.name, dfperson.age, dfprofile.profileDescription
FROM dfperson JOIN dfprofile
ON dfperson.personid == dfprofile.personid""")
Note : 1) As mentioned by @RaphaelRoth ,
val resultDf = PersonDf.join(ProfileDf,Seq("personId"))
is good approach since it doesnt have duplicate columns from both sides if you are using inner join with same table.
2) Spark 2.x example updated in another answer with full set of join operations supported by spark 2.x with examples + result
Also, important thing in joins : broadcast function can help to give hint please see my answer
From https://spark.apache.org/docs/1.5.1/api/java/org/apache/spark/sql/DataFrame.html, use join
:
Inner equi-join with another DataFrame using the given column.
PersonDf.join(ProfileDf,$"personId")
OR
PersonDf.join(ProfileDf,PersonDf("personId") === ProfileDf("personId"))
Update:
You can also save the DFs
as temp table using df.registerTempTable("tableName")
and you can write sql queries using sqlContext
.
Let me explain with an example
create emp DataFrame
import spark.sqlContext.implicits._ val emp = Seq((1,"Smith",-1,"2018","10","M",3000), (2,"Rose",1,"2010","20","M",4000), (3,"Williams",1,"2010","10","M",1000), (4,"Jones",2,"2005","10","F",2000), (5,"Brown",2,"2010","40","",-1), (6,"Brown",2,"2010","50","",-1) ) val empColumns = Seq("emp_id","name","superior_emp_id","year_joined", "emp_dept_id","gender","salary")
val empDF = emp.toDF(empColumns:_*)
Create dept DataFrame
val dept = Seq(("Finance",10), ("Marketing",20), ("Sales",30), ("IT",40) )
val deptColumns = Seq("dept_name","dept_id") val deptDF = dept.toDF(deptColumns:_*)
Now let's join emp.emp_dept_id with dept.dept_id
empDF.join(deptDF,empDF("emp_dept_id") === deptDF("dept_id"),"inner")
.show(false)
This results below
+------+--------+---------------+-----------+-----------+------+------+---------+-------+
|emp_id|name |superior_emp_id|year_joined|emp_dept_id|gender|salary|dept_name|dept_id|
+------+--------+---------------+-----------+-----------+------+------+---------+-------+
|1 |Smith |-1 |2018 |10 |M |3000 |Finance |10 |
|2 |Rose |1 |2010 |20 |M |4000 |Marketing|20 |
|3 |Williams|1 |2010 |10 |M |1000 |Finance |10 |
|4 |Jones |2 |2005 |10 |F |2000 |Finance |10 |
|5 |Brown |2 |2010 |40 | |-1 |IT |40 |
+------+--------+---------------+-----------+-----------+------+------+---------+-------+
If you are looking in python PySpark Join with example and also find the complete Scala example at Spark Join