How do I convert dates in a Pandas data frame to a 'date' data type?

前端 未结 10 2103
独厮守ぢ
独厮守ぢ 2020-11-28 02:56

I have a Pandas data frame, one of the column contains date strings in the format YYYY-MM-DD

For e.g. \'2013-10-28\'

At the moment th

相关标签:
10条回答
  • 2020-11-28 03:43

    Essentially equivalent to @waitingkuo, but I would use to_datetime here (it seems a little cleaner, and offers some additional functionality e.g. dayfirst):

    In [11]: df
    Out[11]:
       a        time
    0  1  2013-01-01
    1  2  2013-01-02
    2  3  2013-01-03
    
    In [12]: pd.to_datetime(df['time'])
    Out[12]:
    0   2013-01-01 00:00:00
    1   2013-01-02 00:00:00
    2   2013-01-03 00:00:00
    Name: time, dtype: datetime64[ns]
    
    In [13]: df['time'] = pd.to_datetime(df['time'])
    
    In [14]: df
    Out[14]:
       a                time
    0  1 2013-01-01 00:00:00
    1  2 2013-01-02 00:00:00
    2  3 2013-01-03 00:00:00
    

    Handling ValueErrors
    If you run into a situation where doing

    df['time'] = pd.to_datetime(df['time'])
    

    Throws a

    ValueError: Unknown string format
    

    That means you have invalid (non-coercible) values. If you are okay with having them converted to pd.NaT, you can add an errors='coerce' argument to to_datetime:

    df['time'] = pd.to_datetime(df['time'], errors='coerce')
    
    0 讨论(0)
  • 2020-11-28 03:44

    Try to convert one of the rows into timestamp using the pd.to_datetime function and then use .map to map the formular to the entire column

    0 讨论(0)
  • 2020-11-28 03:45

    Now you can do df['column'].dt.date

    Note that for datetime objects, if you don't see the hour when they're all 00:00:00, that's not pandas. That's iPython notebook trying to make things look pretty.

    0 讨论(0)
  • 2020-11-28 03:45

    Another way to do this and this works well if you have multiple columns to convert to datetime.

    cols = ['date1','date2']
    df[cols] = df[cols].apply(pd.to_datetime)
    
    0 讨论(0)
提交回复
热议问题