I have a pandas data frame like this:
Column1 Column2 Column3 Column4 Column5
0 a 1 2 3 4
1 a 3 4
You can call apply
pass axis=1
to apply
row-wise, then convert the dtype to str
and join
:
In [153]:
df['ColumnA'] = df[df.columns[1:]].apply(
lambda x: ','.join(x.dropna().astype(str)),
axis=1
)
df
Out[153]:
Column1 Column2 Column3 Column4 Column5 ColumnA
0 a 1 2 3 4 1,2,3,4
1 a 3 4 5 NaN 3,4,5
2 b 6 7 8 NaN 6,7,8
3 c 7 7 NaN NaN 7,7
Here I call dropna
to get rid of the NaN
, however we need to cast again to int
so we don't end up with floats as str.
I propose to use .assign
df2 = df.assign(ColumnA = df.Column2.astype(str) + ', ' + \
df.Column3.astype(str) + ', ' df.Column4.astype(str) + ', ' \
df.Column4.astype(str) + ', ' df.Column5.astype(str))
it's simple, maybe long but it worked for me
If you have lot of columns say - 1000 columns in dataframe and you want to merge few columns based on particular column name
e.g. -Column2
in question and arbitrary no. of columns after that column (e.g. here 3 columns after 'Column2
inclusive of Column2
as OP asked).
We can get position of column using .get_loc() - as answered here
source_col_loc = df.columns.get_loc('Column2') # column position starts from 0
df['ColumnA'] = df.iloc[:,source_col_loc+1:source_col_loc+4].apply(
lambda x: ",".join(x.astype(str)), axis=1)
df
Column1 Column2 Column3 Column4 Column5 ColumnA
0 a 1 2 3 4 1,2,3,4
1 a 3 4 5 NaN 3,4,5
2 b 6 7 8 NaN 6,7,8
3 c 7 7 NaN NaN 7,7
To remove NaN
, use .dropna() or .fillna()
Hope it helps!