I have a DataFrame with a MultiIndex created after some grouping:
import numpy as np
import pandas as p
from numpy.random import randn
df = p.DataFrame({
A nice way to do this in one line using pandas.concat()
:
import pandas as pd
pd.concat([df], keys=['Foo'], names=['Firstlevel'])
An even shorter way:
pd.concat({'Foo': df}, names=['Firstlevel'])
This can be generalized to many data frames, see the docs.
How about building it from scratch with pandas.MultiIndex.from_tuples?
df.index = p.MultiIndex.from_tuples(
[(nl, A, B) for nl, (A, B) in
zip(['Foo'] * len(df), df.index)],
names=['FirstLevel', 'A', 'B'])
Similarly to cxrodger's solution, this is a flexible method and avoids modifying the underlying array for the dataframe.
I made a little function out of cxrodgers answer, which IMHO is the best solution since it works purely on an index, independent of any data frame or series.
There is one fix I added: the to_frame()
method will invent new names for index levels that don't have one. As such the new index will have names that don't exist in the old index. I added some code to revert this name-change.
Below is the code, I've used it myself for a while and it seems to work fine. If you find any issues or edge cases, I'd be much obliged to adjust my answer.
import pandas as pd
def _handle_insert_loc(loc: int, n: int) -> int:
"""
Computes the insert index from the right if loc is negative for a given size of n.
"""
return n + loc + 1 if loc < 0 else loc
def add_index_level(old_index: pd.Index, value: Any, name: str = None, loc: int = 0) -> pd.MultiIndex:
"""
Expand a (multi)index by adding a level to it.
:param old_index: The index to expand
:param name: The name of the new index level
:param value: Scalar or list-like, the values of the new index level
:param loc: Where to insert the level in the index, 0 is at the front, negative values count back from the rear end
:return: A new multi-index with the new level added
"""
loc = _handle_insert_loc(loc, len(old_index.names))
old_index_df = old_index.to_frame()
old_index_df.insert(loc, name, value)
new_index_names = list(old_index.names) # sometimes new index level names are invented when converting to a df,
new_index_names.insert(loc, name) # here the original names are reconstructed
new_index = pd.MultiIndex.from_frame(old_index_df, names=new_index_names)
return new_index
It passed the following unittest code:
import unittest
import numpy as np
import pandas as pd
class TestPandaStuff(unittest.TestCase):
def test_add_index_level(self):
df = pd.DataFrame(data=np.random.normal(size=(6, 3)))
i1 = add_index_level(df.index, "foo")
# it does not invent new index names where there are missing
self.assertEqual([None, None], i1.names)
# the new level values are added
self.assertTrue(np.all(i1.get_level_values(0) == "foo"))
self.assertTrue(np.all(i1.get_level_values(1) == df.index))
# it does not invent new index names where there are missing
i2 = add_index_level(i1, ["x", "y"]*3, name="xy", loc=2)
i3 = add_index_level(i2, ["a", "b", "c"]*2, name="abc", loc=-1)
self.assertEqual([None, None, "xy", "abc"], i3.names)
# the new level values are added
self.assertTrue(np.all(i3.get_level_values(0) == "foo"))
self.assertTrue(np.all(i3.get_level_values(1) == df.index))
self.assertTrue(np.all(i3.get_level_values(2) == ["x", "y"]*3))
self.assertTrue(np.all(i3.get_level_values(3) == ["a", "b", "c"]*2))
# df.index = i3
# print()
# print(df)
You can first add it as a normal column and then append it to the current index, so:
df['Firstlevel'] = 'Foo'
df.set_index('Firstlevel', append=True, inplace=True)
And change the order if needed with:
df.reorder_levels(['Firstlevel', 'A', 'B'])
Which results in:
Vals
Firstlevel A B
Foo a1 b1 0.871563
b2 0.494001
a2 b3 -0.167811
a3 b4 -1.353409
I think this is a more general solution:
# Convert index to dataframe
old_idx = df.index.to_frame()
# Insert new level at specified location
old_idx.insert(0, 'new_level_name', new_level_values)
# Convert back to MultiIndex
df.index = pandas.MultiIndex.from_frame(old_idx)
Some advantages over the other answers: