Reverse colormap in matplotlib

前端 未结 7 744
小蘑菇
小蘑菇 2020-11-28 02:04

I would like to know how to simply reverse the color order of a given colormap in order to use it with plot_surface.

相关标签:
7条回答
  • 2020-11-28 02:43

    The standard colormaps also all have reversed versions. They have the same names with _r tacked on to the end. (Documentation here.)

    0 讨论(0)
  • 2020-11-28 02:47

    In matplotlib a color map isn't a list, but it contains the list of its colors as colormap.colors. And the module matplotlib.colors provides a function ListedColormap() to generate a color map from a list. So you can reverse any color map by doing

    colormap_r = ListedColormap(colormap.colors[::-1])
    
    0 讨论(0)
  • 2020-11-28 02:52

    As a LinearSegmentedColormaps is based on a dictionary of red, green and blue, it's necessary to reverse each item:

    import matplotlib.pyplot as plt
    import matplotlib as mpl
    def reverse_colourmap(cmap, name = 'my_cmap_r'):
        """
        In: 
        cmap, name 
        Out:
        my_cmap_r
    
        Explanation:
        t[0] goes from 0 to 1
        row i:   x  y0  y1 -> t[0] t[1] t[2]
                       /
                      /
        row i+1: x  y0  y1 -> t[n] t[1] t[2]
    
        so the inverse should do the same:
        row i+1: x  y1  y0 -> 1-t[0] t[2] t[1]
                       /
                      /
        row i:   x  y1  y0 -> 1-t[n] t[2] t[1]
        """        
        reverse = []
        k = []   
    
        for key in cmap._segmentdata:    
            k.append(key)
            channel = cmap._segmentdata[key]
            data = []
    
            for t in channel:                    
                data.append((1-t[0],t[2],t[1]))            
            reverse.append(sorted(data))    
    
        LinearL = dict(zip(k,reverse))
        my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL) 
        return my_cmap_r
    

    See that it works:

    my_cmap        
    <matplotlib.colors.LinearSegmentedColormap at 0xd5a0518>
    
    my_cmap_r = reverse_colourmap(my_cmap)
    
    fig = plt.figure(figsize=(8, 2))
    ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
    ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = my_cmap, norm=norm,orientation='horizontal')
    cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = my_cmap_r, norm=norm, orientation='horizontal')
    

    EDIT


    I don't get the comment of user3445587. It works fine on the rainbow colormap:

    cmap = mpl.cm.jet
    cmap_r = reverse_colourmap(cmap)
    
    fig = plt.figure(figsize=(8, 2))
    ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
    ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = cmap, norm=norm,orientation='horizontal')
    cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = cmap_r, norm=norm, orientation='horizontal')
    

    But it especially works nice for custom declared colormaps, as there is not a default _r for custom declared colormaps. Following example taken from http://matplotlib.org/examples/pylab_examples/custom_cmap.html:

    cdict1 = {'red':   ((0.0, 0.0, 0.0),
                       (0.5, 0.0, 0.1),
                       (1.0, 1.0, 1.0)),
    
             'green': ((0.0, 0.0, 0.0),
                       (1.0, 0.0, 0.0)),
    
             'blue':  ((0.0, 0.0, 1.0),
                       (0.5, 0.1, 0.0),
                       (1.0, 0.0, 0.0))
             }
    
    blue_red1 = mpl.colors.LinearSegmentedColormap('BlueRed1', cdict1)
    blue_red1_r = reverse_colourmap(blue_red1)
    
    fig = plt.figure(figsize=(8, 2))
    ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
    ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
    
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = blue_red1, norm=norm,orientation='horizontal')
    cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = blue_red1_r, norm=norm, orientation='horizontal')
    

    0 讨论(0)
  • 2020-11-28 02:58

    There is no built-in way (yet) of reversing arbitrary colormaps, but one simple solution is to actually not modify the colorbar but to create an inverting Normalize object:

    from matplotlib.colors import Normalize
    
    class InvertedNormalize(Normalize):
        def __call__(self, *args, **kwargs):
            return 1 - super(InvertedNormalize, self).__call__(*args, **kwargs)
    

    You can then use this with plot_surface and other Matplotlib plotting functions by doing e.g.

    inverted_norm = InvertedNormalize(vmin=10, vmax=100)
    ax.plot_surface(..., cmap=<your colormap>, norm=inverted_norm)
    

    This will work with any Matplotlib colormap.

    0 讨论(0)
  • 2020-11-28 03:03

    As of Matplotlib 2.0, there is a reversed() method for ListedColormap and LinearSegmentedColorMap objects, so you can just do

    cmap_reversed = cmap.reversed()

    Here is the documentation.

    0 讨论(0)
  • 2020-11-28 03:03

    There are two types of LinearSegmentedColormaps. In some, the _segmentdata is given explicitly, e.g., for jet:

    >>> cm.jet._segmentdata
    {'blue': ((0.0, 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0)), 'red': ((0.0, 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), 'green': ((0.0, 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0))}
    

    For rainbow, _segmentdata is given as follows:

    >>> cm.rainbow._segmentdata
    {'blue': <function <lambda> at 0x7fac32ac2b70>, 'red': <function <lambda> at 0x7fac32ac7840>, 'green': <function <lambda> at 0x7fac32ac2d08>}
    

    We can find the functions in the source of matplotlib, where they are given as

    _rainbow_data = {
            'red': gfunc[33],   # 33: lambda x: np.abs(2 * x - 0.5),
            'green': gfunc[13], # 13: lambda x: np.sin(x * np.pi),
            'blue': gfunc[10],  # 10: lambda x: np.cos(x * np.pi / 2)
    }
    

    Everything you want is already done in matplotlib, just call cm.revcmap, which reverses both types of segmentdata, so

    cm.revcmap(cm.rainbow._segmentdata)
    

    should do the job - you can simply create a new LinearSegmentData from that. In revcmap, the reversal of function based SegmentData is done with

    def _reverser(f):
        def freversed(x):
            return f(1 - x)
        return freversed
    

    while the other lists are reversed as usual

    valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)] 
    

    So actually the whole thing you want, is

    def reverse_colourmap(cmap, name = 'my_cmap_r'):
         return mpl.colors.LinearSegmentedColormap(name, cm.revcmap(cmap._segmentdata)) 
    
    0 讨论(0)
提交回复
热议问题