I have a multi output(200) binary classification model which I wrote in keras.
In this model I want to add additional metrics such as ROC and AUC but to my knowledg
The following solution worked for me:
import tensorflow as tf
from keras import backend as K
def auc(y_true, y_pred):
auc = tf.metrics.auc(y_true, y_pred)[1]
K.get_session().run(tf.local_variables_initializer())
return auc
model.compile(loss="binary_crossentropy", optimizer='adam', metrics=[auc])
You can monitor auc during training by providing metrics the following way:
METRICS = [
keras.metrics.TruePositives(name='tp'),
keras.metrics.FalsePositives(name='fp'),
keras.metrics.TrueNegatives(name='tn'),
keras.metrics.FalseNegatives(name='fn'),
keras.metrics.BinaryAccuracy(name='accuracy'),
keras.metrics.Precision(name='precision'),
keras.metrics.Recall(name='recall'),
keras.metrics.AUC(name='auc'),
]
model = keras.Sequential([
keras.layers.Dense(16, activation='relu', input_shape=(train_features.shape[-1],)),
keras.layers.Dense(1, activation='sigmoid'),
])
model.compile(
optimizer=keras.optimizers.Adam(lr=1e-3)
loss=keras.losses.BinaryCrossentropy(),
metrics=METRICS)
for a more detailed tutorial see:
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
Set your model architecture with tf.keras.metrics.AUC(): Read following Keras Blog: Keras Page
def model_architecture_ann(in_dim,lr=0.0001):
model = Sequential()
model.add(Dense(512, input_dim=X_train_filtered.shape[1], activation='relu'))
model.add(Dense(1, activation='sigmoid'))
opt = keras.optimizers.SGD(learning_rate=0.001)
auc=tf.keras.metrics.AUC()
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[tf.keras.metrics.AUC(name='auc')])
model.summary()
return model
Due to that you can't calculate ROC&AUC by mini-batches, you can only calculate it on the end of one epoch. There is a solution from jamartinh, I patch the codes below for convenience:
from sklearn.metrics import roc_auc_score
from keras.callbacks import Callback
class RocCallback(Callback):
def __init__(self,training_data,validation_data):
self.x = training_data[0]
self.y = training_data[1]
self.x_val = validation_data[0]
self.y_val = validation_data[1]
def on_train_begin(self, logs={}):
return
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
y_pred_train = self.model.predict_proba(self.x)
roc_train = roc_auc_score(self.y, y_pred_train)
y_pred_val = self.model.predict_proba(self.x_val)
roc_val = roc_auc_score(self.y_val, y_pred_val)
print('\rroc-auc_train: %s - roc-auc_val: %s' % (str(round(roc_train,4)),str(round(roc_val,4))),end=100*' '+'\n')
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
roc = RocCallback(training_data=(X_train, y_train),
validation_data=(X_test, y_test))
model.fit(X_train, y_train,
validation_data=(X_test, y_test),
callbacks=[roc])
A more hackable way using tf.contrib.metrics.streaming_auc
:
import numpy as np
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from sklearn.datasets import make_classification
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import np_utils
from keras.callbacks import Callback, EarlyStopping
# define roc_callback, inspired by https://github.com/keras-team/keras/issues/6050#issuecomment-329996505
def auc_roc(y_true, y_pred):
# any tensorflow metric
value, update_op = tf.contrib.metrics.streaming_auc(y_pred, y_true)
# find all variables created for this metric
metric_vars = [i for i in tf.local_variables() if 'auc_roc' in i.name.split('/')[1]]
# Add metric variables to GLOBAL_VARIABLES collection.
# They will be initialized for new session.
for v in metric_vars:
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v)
# force to update metric values
with tf.control_dependencies([update_op]):
value = tf.identity(value)
return value
# generation a small dataset
N_all = 10000
N_tr = int(0.7 * N_all)
N_te = N_all - N_tr
X, y = make_classification(n_samples=N_all, n_features=20, n_classes=2)
y = np_utils.to_categorical(y, num_classes=2)
X_train, X_valid = X[:N_tr, :], X[N_tr:, :]
y_train, y_valid = y[:N_tr, :], y[N_tr:, :]
# model & train
model = Sequential()
model.add(Dense(2, activation="softmax", input_shape=(X.shape[1],)))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy', auc_roc])
my_callbacks = [EarlyStopping(monitor='auc_roc', patience=300, verbose=1, mode='max')]
model.fit(X, y,
validation_split=0.3,
shuffle=True,
batch_size=32, nb_epoch=5, verbose=1,
callbacks=my_callbacks)
# # or use independent valid set
# model.fit(X_train, y_train,
# validation_data=(X_valid, y_valid),
# batch_size=32, nb_epoch=5, verbose=1,
# callbacks=my_callbacks)
Like you, I prefer using scikit-learn's built in methods to evaluate AUROC. I find that the best and easiest way to do this in keras is to create a custom metric. If tensorflow is your backend, implementing this can be done in very few lines of code:
import tensorflow as tf
from sklearn.metrics import roc_auc_score
def auroc(y_true, y_pred):
return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# Build Model...
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])
Creating a custom Callback as mentioned in other answers will not work for your case since your model has multiple ouputs, but this will work. Additionally, this methods allows the metric to be evaluated on both training and validation data whereas a keras callback does not have access to the training data and can thus only be used to evaluate performance on the training data.
I solved my problem this way
consider you have testing dataset x_test for features and y_test for its corresponding targets.
first we predict targets from feature using our trained model
y_pred = model.predict_proba(x_test)
then from sklearn we import roc_auc_score function and then simple pass the original targets and predicted targets to the function.
roc_auc_score(y_test, y_pred)