We use a data acquisition card to take readings from a device that increases its signal to a peak and then falls back to near the original value. To find the peak value we c
There are lots and lots of classic peak detection methods, any of which might work. You'll have to see what, in particular, bounds the quality of your data. Here are basic descriptions:
Between any two points in your data, (x(0), y(0))
and (x(n), y(n))
, add up y(i + 1) - y(i)
for 0 <= i < n
and call this T
("travel") and set R
("rise") to y(n) - y(0) + k
for suitably small k
. T/R > 1
indicates a peak. This works OK if large travel due to noise is unlikely or if noise distributes symmetrically around a base curve shape. For your application, accept the earliest peak with a score above a given threshold, or analyze the curve of travel per rise values for more interesting properties.
Use matched filters to score similarity to a standard peak shape (essentially, use a normalized dot-product against some shape to get a cosine-metric of similarity)
Deconvolve against a standard peak shape and check for high values (though I often find 2 to be less sensitive to noise for simple instrumentation output).
Smooth the data and check for triplets of equally spaced points where, if x0 < x1 < x2, y1 > 0.5 * (y0 + y2)
, or check Euclidean distances like this: D((x0, y0), (x1, y1)) + D((x1, y1), (x2, y2)) > D((x0, y0),(x2, y2))
, which relies on the triangle inequality. Using simple ratios will again provide you a scoring mechanism.
Fit a very simple 2-gaussian mixture model to your data (for example, Numerical Recipes has a nice ready-made chunk of code). Take the earlier peak. This will deal correctly with overlapping peaks.
Find the best match in the data to a simple Gaussian, Cauchy, Poisson, or what-have-you curve. Evaluate this curve over a broad range and subtract it from a copy of the data after noting it's peak location. Repeat. Take the earliest peak whose model parameters (standard deviation probably, but some applications might care about kurtosis or other features) meet some criterion. Watch out for artifacts left behind when peaks are subtracted from the data. Best match might be determined by the kind of match scoring suggested in #2 above.
I've done what you're doing before: finding peaks in DNA sequence data, finding peaks in derivatives estimated from measured curves, and finding peaks in histograms.
I encourage you to attend carefully to proper baselining. Wiener filtering or other filtering or simple histogram analysis is often an easy way to baseline in the presence of noise.
Finally, if your data is typically noisy and you're getting data off the card as unreferenced single-ended output (or even referenced, just not differential), and if you're averaging lots of observations into each data point, try sorting those observations and throwing away the first and last quartile and averaging what remains. There are a host of such outlier elimination tactics that can be really useful.
This method is basically from David Marr's book "Vision"
Gaussian blur your signal with the expected width of your peaks. this gets rid of noise spikes and your phase data is undamaged.
Then edge detect (LOG will do)
Then your edges were the edges of features (like peaks). look between edges for peaks, sort peaks by size, and you're done.
I have used variations on this and they work very well.
I would like to contribute to this thread an algorithm that I have developed myself:
It is based on the principle of dispersion: if a new datapoint is a given x number of standard deviations away from some moving mean, the algorithm signals (also called z-score). The algorithm is very robust because it constructs a separate moving mean and deviation, such that signals do not corrupt the threshold. Future signals are therefore identified with approximately the same accuracy, regardless of the amount of previous signals. The algorithm takes 3 inputs: lag = the lag of the moving window
, threshold = the z-score at which the algorithm signals
and influence = the influence (between 0 and 1) of new signals on the mean and standard deviation
. For example, a lag
of 5 will use the last 5 observations to smooth the data. A threshold
of 3.5 will signal if a datapoint is 3.5 standard deviations away from the moving mean. And an influence
of 0.5 gives signals half of the influence that normal datapoints have. Likewise, an influence
of 0 ignores signals completely for recalculating the new threshold: an influence of 0 is therefore the most robust option.
It works as follows:
Pseudocode
# Let y be a vector of timeseries data of at least length lag+2
# Let mean() be a function that calculates the mean
# Let std() be a function that calculates the standard deviaton
# Let absolute() be the absolute value function
# Settings (the ones below are examples: choose what is best for your data)
set lag to 5; # lag 5 for the smoothing functions
set threshold to 3.5; # 3.5 standard deviations for signal
set influence to 0.5; # between 0 and 1, where 1 is normal influence, 0.5 is half
# Initialise variables
set signals to vector 0,...,0 of length of y; # Initialise signal results
set filteredY to y(1,...,lag) # Initialise filtered series
set avgFilter to null; # Initialise average filter
set stdFilter to null; # Initialise std. filter
set avgFilter(lag) to mean(y(1,...,lag)); # Initialise first value
set stdFilter(lag) to std(y(1,...,lag)); # Initialise first value
for i=lag+1,...,t do
if absolute(y(i) - avgFilter(i-1)) > threshold*stdFilter(i-1) then
if y(i) > avgFilter(i-1)
set signals(i) to +1; # Positive signal
else
set signals(i) to -1; # Negative signal
end
# Adjust the filters
set filteredY(i) to influence*y(i) + (1-influence)*filteredY(i-1);
set avgFilter(i) to mean(filteredY(i-lag,i),lag);
set stdFilter(i) to std(filteredY(i-lag,i),lag);
else
set signals(i) to 0; # No signal
# Adjust the filters
set filteredY(i) to y(i);
set avgFilter(i) to mean(filteredY(i-lag,i),lag);
set stdFilter(i) to std(filteredY(i-lag,i),lag);
end
end