How to add a new row to an empty numpy array

前端 未结 6 571
旧时难觅i
旧时难觅i 2020-11-28 01:13

Using standard Python arrays, I can do the following:

arr = []
arr.append([1,2,3])
arr.append([4,5,6])
# arr is now [[1,2,3],[4,5,6]]

Howev

相关标签:
6条回答
  • 2020-11-28 01:32

    The way to "start" the array that you want is:

    arr = np.empty((0,3), int)
    

    Which is an empty array but it has the proper dimensionality.

    >>> arr
    array([], shape=(0, 3), dtype=int64)
    

    Then be sure to append along axis 0:

    arr = np.append(arr, np.array([[1,2,3]]), axis=0)
    arr = np.append(arr, np.array([[4,5,6]]), axis=0)
    

    But, @jonrsharpe is right. In fact, if you're going to be appending in a loop, it would be much faster to append to a list as in your first example, then convert to a numpy array at the end, since you're really not using numpy as intended during the loop:

    In [210]: %%timeit
       .....: l = []
       .....: for i in xrange(1000):
       .....:     l.append([3*i+1,3*i+2,3*i+3])
       .....: l = np.asarray(l)
       .....: 
    1000 loops, best of 3: 1.18 ms per loop
    
    In [211]: %%timeit
       .....: a = np.empty((0,3), int)
       .....: for i in xrange(1000):
       .....:     a = np.append(a, 3*i+np.array([[1,2,3]]), 0)
       .....: 
    100 loops, best of 3: 18.5 ms per loop
    
    In [214]: np.allclose(a, l)
    Out[214]: True
    

    The numpythonic way to do it depends on your application, but it would be more like:

    In [220]: timeit n = np.arange(1,3001).reshape(1000,3)
    100000 loops, best of 3: 5.93 µs per loop
    
    In [221]: np.allclose(a, n)
    Out[221]: True
    
    0 讨论(0)
  • 2020-11-28 01:37

    using an custom dtype definition, what worked for me was:

    import numpy
    
    # define custom dtype
    type1 = numpy.dtype([('freq', numpy.float64, 1), ('amplitude', numpy.float64, 1)])
    # declare empty array, zero rows but one column
    arr = numpy.empty([0,1],dtype=type1)
    # store row data, maybe inside a loop
    row = numpy.array([(0.0001, 0.002)], dtype=type1)
    # append row to the main array
    arr = numpy.row_stack((arr, row))
    # print values stored in the row 0
    print float(arr[0]['freq'])
    print float(arr[0]['amplitude'])
    
    0 讨论(0)
  • 2020-11-28 01:41

    In this case you might want to use the functions np.hstack and np.vstack

    arr = np.array([])
    arr = np.hstack((arr, np.array([1,2,3])))
    # arr is now [1,2,3]
    
    arr = np.vstack((arr, np.array([4,5,6])))
    # arr is now [[1,2,3],[4,5,6]]
    

    You also can use the np.concatenate function.

    Cheers

    0 讨论(0)
  • 2020-11-28 01:42

    I want to do a for loop, yet with askewchan's method it does not work well, so I have modified it.

    x = np.empty((0,3))
    y = np.array([1,2,3])
    for i in ...
        x = np.vstack((x,y))
    
    0 讨论(0)
  • 2020-11-28 01:43

    In case of adding new rows for array in loop, Assign the array directly for firsttime in loop instead of initialising an empty array.

    for i in range(0,len(0,100)):
        SOMECALCULATEDARRAY = .......
        if(i==0):
            finalArrayCollection = SOMECALCULATEDARRAY
        else:
            finalArrayCollection = np.vstack(finalArrayCollection,SOMECALCULATEDARRAY)
    

    This is mainly useful when the shape of the array is unknown

    0 讨论(0)
  • 2020-11-28 01:54

    Here is my solution:

    arr = []
    arr.append([1,2,3])
    arr.append([4,5,6])
    np_arr = np.array(arr)
    
    0 讨论(0)
提交回复
热议问题