For an array of size N, what is the number of comparisons required?
int[] int_array = {4, 6, 2, 9, 1, 7, 4, 2, 9, 0, 3, 6, 1, 6, 8};
int largst=int_array[0];
int second=int_array[0];
for (int i=0; i<int_array.length; i++){
if(int_array[i]>largst) {
second=largst;
largst=int_array[i];
}
else if(int_array[i]>second && int_array[i]<largst) {
second=int_array[i];
}
}
Use counting sort and then find the second largest element, starting from index 0 towards the end. There should be at least 1 comparison, at most n-1
(when there's only one element!).
package com.array.orderstatistics;
import java.util.Arrays;
import java.util.Collections;
public class SecondLargestElement {
/**
* Total Time Complexity will be n log n + O(1)
* @param str
*/
public static void main(String str[]) {
Integer[] integerArr = new Integer[] { 5, 1, 2, 6, 4 };
// Step1 : Time Complexity will be n log(n)
Arrays.sort(integerArr, Collections.reverseOrder());
// Step2 : Array.get Second largestElement
int secondLargestElement = integerArr[1];
System.out.println(secondLargestElement);
}
}
Suppose provided array is inPutArray = [1,2,5,8,7,3] expected O/P -> 7 (second largest)
take temp array
temp = [0,0], int dummmy=0;
for (no in inPutArray) {
if(temp[1]<no)
temp[1] = no
if(temp[0]<temp[1]){
dummmy = temp[0]
temp[0] = temp[1]
temp[1] = temp
}
}
print("Second largest no is %d",temp[1])
I have gone through all the posts above but I am convinced that the implementation of the Tournament algorithm is the best approach. Let us consider the following algorithm posted by @Gumbo
largest := numbers[0];
secondLargest := null
for i=1 to numbers.length-1 do
number := numbers[i];
if number > largest then
secondLargest := largest;
largest := number;
else
if number > secondLargest then
secondLargest := number;
end;
end;
end;
It is very good in case we are going to find the second largest number in an array. It has (2n-1) number of comparisons. But what if you want to calculate the third largest number or some kth largest number. The above algorithm doesn't work. You got to another procedure.
So, I believe tournament algorithm approach is the best and here is the link for that.
class solution:
def SecondLargestNumber (self,l):
Largest = 0
secondLargest = 0
for i in l:
if i> Largest:
secondLargest = Largest
Largest = max(Largest, i)
return Largest, secondLargest