I\'m looking for the fastest way to obtain the value of π, as a personal challenge. More specifically, I\'m using ways that don\'t involve using #define
constan
The BBP formula allows you to compute the nth digit - in base 2 (or 16) - without having to even bother with the previous n-1 digits first :)
Pi is exactly 3! [Prof. Frink (Simpsons)]
Joke, but here's one in C# (.NET-Framework required).
using System;
using System.Text;
class Program {
static void Main(string[] args) {
int Digits = 100;
BigNumber x = new BigNumber(Digits);
BigNumber y = new BigNumber(Digits);
x.ArcTan(16, 5);
y.ArcTan(4, 239);
x.Subtract(y);
string pi = x.ToString();
Console.WriteLine(pi);
}
}
public class BigNumber {
private UInt32[] number;
private int size;
private int maxDigits;
public BigNumber(int maxDigits) {
this.maxDigits = maxDigits;
this.size = (int)Math.Ceiling((float)maxDigits * 0.104) + 2;
number = new UInt32[size];
}
public BigNumber(int maxDigits, UInt32 intPart)
: this(maxDigits) {
number[0] = intPart;
for (int i = 1; i < size; i++) {
number[i] = 0;
}
}
private void VerifySameSize(BigNumber value) {
if (Object.ReferenceEquals(this, value))
throw new Exception("BigNumbers cannot operate on themselves");
if (value.size != this.size)
throw new Exception("BigNumbers must have the same size");
}
public void Add(BigNumber value) {
VerifySameSize(value);
int index = size - 1;
while (index >= 0 && value.number[index] == 0)
index--;
UInt32 carry = 0;
while (index >= 0) {
UInt64 result = (UInt64)number[index] +
value.number[index] + carry;
number[index] = (UInt32)result;
if (result >= 0x100000000U)
carry = 1;
else
carry = 0;
index--;
}
}
public void Subtract(BigNumber value) {
VerifySameSize(value);
int index = size - 1;
while (index >= 0 && value.number[index] == 0)
index--;
UInt32 borrow = 0;
while (index >= 0) {
UInt64 result = 0x100000000U + (UInt64)number[index] -
value.number[index] - borrow;
number[index] = (UInt32)result;
if (result >= 0x100000000U)
borrow = 0;
else
borrow = 1;
index--;
}
}
public void Multiply(UInt32 value) {
int index = size - 1;
while (index >= 0 && number[index] == 0)
index--;
UInt32 carry = 0;
while (index >= 0) {
UInt64 result = (UInt64)number[index] * value + carry;
number[index] = (UInt32)result;
carry = (UInt32)(result >> 32);
index--;
}
}
public void Divide(UInt32 value) {
int index = 0;
while (index < size && number[index] == 0)
index++;
UInt32 carry = 0;
while (index < size) {
UInt64 result = number[index] + ((UInt64)carry << 32);
number[index] = (UInt32)(result / (UInt64)value);
carry = (UInt32)(result % (UInt64)value);
index++;
}
}
public void Assign(BigNumber value) {
VerifySameSize(value);
for (int i = 0; i < size; i++) {
number[i] = value.number[i];
}
}
public override string ToString() {
BigNumber temp = new BigNumber(maxDigits);
temp.Assign(this);
StringBuilder sb = new StringBuilder();
sb.Append(temp.number[0]);
sb.Append(System.Globalization.CultureInfo.CurrentCulture.NumberFormat.CurrencyDecimalSeparator);
int digitCount = 0;
while (digitCount < maxDigits) {
temp.number[0] = 0;
temp.Multiply(100000);
sb.AppendFormat("{0:D5}", temp.number[0]);
digitCount += 5;
}
return sb.ToString();
}
public bool IsZero() {
foreach (UInt32 item in number) {
if (item != 0)
return false;
}
return true;
}
public void ArcTan(UInt32 multiplicand, UInt32 reciprocal) {
BigNumber X = new BigNumber(maxDigits, multiplicand);
X.Divide(reciprocal);
reciprocal *= reciprocal;
this.Assign(X);
BigNumber term = new BigNumber(maxDigits);
UInt32 divisor = 1;
bool subtractTerm = true;
while (true) {
X.Divide(reciprocal);
term.Assign(X);
divisor += 2;
term.Divide(divisor);
if (term.IsZero())
break;
if (subtractTerm)
this.Subtract(term);
else
this.Add(term);
subtractTerm = !subtractTerm;
}
}
}
With doubles:
4.0 * (4.0 * Math.Atan(0.2) - Math.Atan(1.0 / 239.0))
This will be accurate up to 14 decimal places, enough to fill a double (the inaccuracy is probably because the rest of the decimals in the arc tangents are truncated).
Also Seth, it's 3.141592653589793238463, not 64.
If you are willing to use an approximation, 355 / 113
is good for 6 decimal digits, and has the added advantage of being usable with integer expressions. That's not as important these days, as "floating point math co-processor" ceased to have any meaning, but it was quite important once.
This is a "classic" method, very easy to implement. This implementation in python (not the fastest language) does it:
from math import pi
from time import time
precision = 10**6 # higher value -> higher precision
# lower value -> higher speed
t = time()
calc = 0
for k in xrange(0, precision):
calc += ((-1)**k) / (2*k+1.)
calc *= 4. # this is just a little optimization
t = time()-t
print "Calculated: %.40f" % calc
print "Constant pi: %.40f" % pi
print "Difference: %.40f" % abs(calc-pi)
print "Time elapsed: %s" % repr(t)
You can find more information here.
Anyway, the fastest way to get a precise as-much-as-you-want value of pi in python is:
from gmpy import pi
print pi(3000) # the rule is the same as
# the precision on the previous code
Here is the piece of source for the gmpy pi method, I don't think the code is as useful as the comment in this case:
static char doc_pi[]="\
pi(n): returns pi with n bits of precision in an mpf object\n\
";
/* This function was originally from netlib, package bmp, by
* Richard P. Brent. Paulo Cesar Pereira de Andrade converted
* it to C and used it in his LISP interpreter.
*
* Original comments:
*
* sets mp pi = 3.14159... to the available precision.
* uses the gauss-legendre algorithm.
* this method requires time o(ln(t)m(t)), so it is slower
* than mppi if m(t) = o(t**2), but would be faster for
* large t if a faster multiplication algorithm were used
* (see comments in mpmul).
* for a description of the method, see - multiple-precision
* zero-finding and the complexity of elementary function
* evaluation (by r. p. brent), in analytic computational
* complexity (edited by j. f. traub), academic press, 1976, 151-176.
* rounding options not implemented, no guard digits used.
*/
static PyObject *
Pygmpy_pi(PyObject *self, PyObject *args)
{
PympfObject *pi;
int precision;
mpf_t r_i2, r_i3, r_i4;
mpf_t ix;
ONE_ARG("pi", "i", &precision);
if(!(pi = Pympf_new(precision))) {
return NULL;
}
mpf_set_si(pi->f, 1);
mpf_init(ix);
mpf_set_ui(ix, 1);
mpf_init2(r_i2, precision);
mpf_init2(r_i3, precision);
mpf_set_d(r_i3, 0.25);
mpf_init2(r_i4, precision);
mpf_set_d(r_i4, 0.5);
mpf_sqrt(r_i4, r_i4);
for (;;) {
mpf_set(r_i2, pi->f);
mpf_add(pi->f, pi->f, r_i4);
mpf_div_ui(pi->f, pi->f, 2);
mpf_mul(r_i4, r_i2, r_i4);
mpf_sub(r_i2, pi->f, r_i2);
mpf_mul(r_i2, r_i2, r_i2);
mpf_mul(r_i2, r_i2, ix);
mpf_sub(r_i3, r_i3, r_i2);
mpf_sqrt(r_i4, r_i4);
mpf_mul_ui(ix, ix, 2);
/* Check for convergence */
if (!(mpf_cmp_si(r_i2, 0) &&
mpf_get_prec(r_i2) >= (unsigned)precision)) {
mpf_mul(pi->f, pi->f, r_i4);
mpf_div(pi->f, pi->f, r_i3);
break;
}
}
mpf_clear(ix);
mpf_clear(r_i2);
mpf_clear(r_i3);
mpf_clear(r_i4);
return (PyObject*)pi;
}
EDIT: I had some problems with cut and paste and indentation, you can find the source here.