After reading a lot about the differences between REST and SOAP, I got the impression that REST is just another word for HTTP. Can someone explain what functionality REST ad
No, REST is the way HTTP should be used.
Today we only use a tiny bit of the HTTP protocol's methods – namely GET
and POST
. The REST way to do it is to use all of the protocol's methods.
For example, REST dictates the usage of DELETE
to erase a document (be it a file, state, etc.) behind a URI, whereas, with HTTP, you would misuse a GET
or POST
query like ...product/?delete_id=22
.
As I understand it, REST enforces the use of the available HTTP commands as they were meant to be used.
For example, I could do:
GET
http://example.com?method=delete&item=xxx
But with rest I would use the "DELETE" request method, removing the need for the "method" query param
DELETE
http://example.com?item=xxx
HTTP is a contract, a communication protocol and REST is a concept, an architectural style
which may use HTTP, FTP or other communication protocols but is widely used with HTTP.
REST implies a series of constraints about how Server and Client should interact
. HTTP is a communication protocol with a given mechanism for server-client data transfer
, it's most commonly used in REST API just because REST was inspired by WWW (world wide web) which largely used HTTP
before REST was defined, so it's easier to implement REST API style with HTTP.
There are three major constraints in REST (but there are more):
1.
Interaction between server and client should be described via hypertext only.
2.
Server and client should be loosely coupled and make no assumptions about each other. Client should only know resource entry point. Interaction data should be provided by the server in the response.
3.
Server shouldn't store any information about request context. Requests must be independent and idempotent (means if same request is repeated infinitely, exactly same result is retrieved)
And HTTP is just a communication protocol (a tool) that can help to achieve this.
For more info check these links:
https://martinfowler.com/articles/richardsonMaturityModel.html http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
REST APIs must be hypertext-driven
From Roy Fielding's blog here's a set of ways to check if you're building a HTTP API or a REST API:
API designers, please note the following rules before calling your creation a REST API:
- A REST API should not be dependent on any single communication protocol, though its successful mapping to a given protocol may be dependent on the availability of metadata, choice of methods, etc. In general, any protocol element that uses a URI for identification must allow any URI scheme to be used for the sake of that identification. [Failure here implies that identification is not separated from interaction.]
- A REST API should not contain any changes to the communication protocols aside from filling-out or fixing the details of underspecified bits of standard protocols, such as HTTP’s PATCH method or Link header field. Workarounds for broken implementations (such as those browsers stupid enough to believe that HTML defines HTTP’s method set) should be defined separately, or at least in appendices, with an expectation that the workaround will eventually be obsolete. [Failure here implies that the resource interfaces are object-specific, not generic.]
- A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types. Any effort spent describing what methods to use on what URIs of interest should be entirely defined within the scope of the processing rules for a media type (and, in most cases, already defined by existing media types). [Failure here implies that out-of-band information is driving interaction instead of hypertext.]
- A REST API must not define fixed resource names or hierarchies (an obvious coupling of client and server). Servers must have the freedom to control their own namespace. Instead, allow servers to instruct clients on how to construct appropriate URIs, such as is done in HTML forms and URI templates, by defining those instructions within media types and link relations. [Failure here implies that clients are assuming a resource structure due to out-of band information, such as a domain-specific standard, which is the data-oriented equivalent to RPC’s functional coupling].
- A REST API should never have “typed” resources that are significant to the client. Specification authors may use resource types for describing server implementation behind the interface, but those types must be irrelevant and invisible to the client. The only types that are significant to a client are the current representation’s media type and standardized relation names. [ditto]
- A REST API should be entered with no prior knowledge beyond the initial URI (bookmark) and set of standardized media types that are appropriate for the intended audience (i.e., expected to be understood by any client that might use the API). From that point on, all application state transitions must be driven by client selection of server-provided choices that are present in the received representations or implied by the user’s manipulation of those representations. The transitions may be determined (or limited by) the client’s knowledge of media types and resource communication mechanisms, both of which may be improved on-the-fly (e.g., code-on-demand). [Failure here implies that out-of-band information is driving interaction instead of hypertext.]
From You don't know the difference between HTTP and REST
So REST architecture and HTTP 1.1 protocol are independent from each other, but the HTTP 1.1 protocol was built to be the ideal protocol to follow the principles and constraints of REST. One way to look at the relationship between HTTP and REST is, that REST is the design, and HTTP 1.1 is an implementation of that design.
REST = Representational State Transfer
REST is a set of rules, that when followed, enable you to build a distributed application that has a specific set of desirable constraints.
REST is a protocol to exchange any(XML, JSON etc ) messages that can use HTTP to transport those messages.
Features:
It is stateless which means that ideally no connection should be maintained between the client and server. It is the responsibility of the client to pass its context to the server and then the server can store this context to process the client's further request. For example, session maintained by server is identified by session identifier passed by the client.
Advantages of Statelessness:
Disadvantages of Statelessness:
HTTP Methods supported by REST:
GET: /string/someotherstring It is idempotent and should ideally return the same results every time a call is made
PUT: Same like GET. Idempotent and is used to update resources.
POST: should contain a url and body Used for creating resources. Multiple calls should ideally return different results and should create multiple products.
DELETE: Used to delete resources on the server.
HEAD:
The HEAD method is identical to GET except that the server MUST NOT return a message-body in the response. The meta information contained in the HTTP headers in response to a HEAD request SHOULD be identical to the information sent in response to a GET request.
OPTIONS:
This method allows the client to determine the options and/or requirements associated with a resource, or the capabilities of a server, without implying a resource action or initiating a resource retrieval.
HTTP Responses
Go here for all the responses.
Here are a few important ones:
200 - OK
3XX - Additional information needed from the client and url redirection
400 - Bad request
401 - Unauthorized to access
403 - Forbidden
The request was valid, but the server is refusing action. The user might not have the necessary permissions for a resource, or may need an account of some sort.
404 - Not Found
The requested resource could not be found but may be available in the future. Subsequent requests by the client are permissible.
405 - Method Not Allowed A request method is not supported for the requested resource; for example, a GET request on a form that requires data to be presented via POST, or a PUT request on a read-only resource.
404 - Request not found
500 - Internal Server Failure
502 - Bad Gateway Error