I have a db table that stores the following:
RuleID objectProperty ComparisonOperator TargetValue
1 age \'greater_than\' 15
2
Here is some code that compiles as is and does the job. Basically use two dictionaries, one containing a mapping from operator names to boolean functions, and another containing a map from the property names of the User type to PropertyInfos used to invoke the property getter (if public). You pass the User instance, and the three values from your table to the static Apply method.
class User
{
public int Age { get; set; }
public string UserName { get; set; }
}
class Operator
{
private static Dictionary<string, Func<object, object, bool>> s_operators;
private static Dictionary<string, PropertyInfo> s_properties;
static Operator()
{
s_operators = new Dictionary<string, Func<object, object, bool>>();
s_operators["greater_than"] = new Func<object, object, bool>(s_opGreaterThan);
s_operators["equal"] = new Func<object, object, bool>(s_opEqual);
s_properties = typeof(User).GetProperties().ToDictionary(propInfo => propInfo.Name);
}
public static bool Apply(User user, string op, string prop, object target)
{
return s_operators[op](GetPropValue(user, prop), target);
}
private static object GetPropValue(User user, string prop)
{
PropertyInfo propInfo = s_properties[prop];
return propInfo.GetGetMethod(false).Invoke(user, null);
}
#region Operators
static bool s_opGreaterThan(object o1, object o2)
{
if (o1 == null || o2 == null || o1.GetType() != o2.GetType() || !(o1 is IComparable))
return false;
return (o1 as IComparable).CompareTo(o2) > 0;
}
static bool s_opEqual(object o1, object o2)
{
return o1 == o2;
}
//etc.
#endregion
public static void Main(string[] args)
{
User user = new User() { Age = 16, UserName = "John" };
Console.WriteLine(Operator.Apply(user, "greater_than", "Age", 15));
Console.WriteLine(Operator.Apply(user, "greater_than", "Age", 17));
Console.WriteLine(Operator.Apply(user, "equal", "UserName", "John"));
Console.WriteLine(Operator.Apply(user, "equal", "UserName", "Bob"));
}
}
I built a rule engine that takes a different approach than you outlined in your question, but I think you will find it to be much more flexible than your current approach.
Your current approach seems to be focused on a single entity, "User", and your persistent rules identify "propertyname", "operator" and "value". My pattern, instead stores the C# code for a predicate (Func<T, bool>) in an "Expression" column in my database. In the current design, using code generation I am querying the "rules" from my database and compiling an assembly with "Rule" types, each with a "Test" method. Here is the signature for the interface that is implemented each Rule:
public interface IDataRule<TEntity>
{
/// <summary>
/// Evaluates the validity of a rule given an instance of an entity
/// </summary>
/// <param name="entity">Entity to evaluate</param>
/// <returns>result of the evaluation</returns>
bool Test(TEntity entity);
/// <summary>
/// The unique indentifier for a rule.
/// </summary>
int RuleId { get; set; }
/// <summary>
/// Common name of the rule, not unique
/// </summary>
string RuleName { get; set; }
/// <summary>
/// Indicates the message used to notify the user if the rule fails
/// </summary>
string ValidationMessage { get; set; }
/// <summary>
/// indicator of whether the rule is enabled or not
/// </summary>
bool IsEnabled { get; set; }
/// <summary>
/// Represents the order in which a rule should be executed relative to other rules
/// </summary>
int SortOrder { get; set; }
}
The "Expression" is compiled as the body of the "Test" method when the application first executes. As you can see the other columns in the table are also surfaced as first-class properties on the rule so that a developer has flexibility to create an experience for how the user gets notified of failure or success.
Generating an in-memory assembly is a 1-time occurrence during your application and you get a performance gain by not having to use reflection when evaluating your rules. Your expressions are checked at runtime as the assembly will not generate correctly if a property name is misspelled, etc.
The mechanics of creating an in-memory assembly are as follows:
This is actually quite simple because for the majority this code is property implementations and value initialization in the constructor. Besides that, the only other code is the Expression.
NOTE: there is a limitation that your expression must be .NET 2.0 (no lambdas or other C# 3.0 features) due to a limitation in CodeDOM.
Here is some sample code for that.
sb.AppendLine(string.Format("\tpublic class {0} : SomeCompany.ComponentModel.IDataRule<{1}>", className, typeName));
sb.AppendLine("\t{");
sb.AppendLine("\t\tprivate int _ruleId = -1;");
sb.AppendLine("\t\tprivate string _ruleName = \"\";");
sb.AppendLine("\t\tprivate string _ruleType = \"\";");
sb.AppendLine("\t\tprivate string _validationMessage = \"\";");
/// ...
sb.AppendLine("\t\tprivate bool _isenabled= false;");
// constructor
sb.AppendLine(string.Format("\t\tpublic {0}()", className));
sb.AppendLine("\t\t{");
sb.AppendLine(string.Format("\t\t\tRuleId = {0};", ruleId));
sb.AppendLine(string.Format("\t\t\tRuleName = \"{0}\";", ruleName.TrimEnd()));
sb.AppendLine(string.Format("\t\t\tRuleType = \"{0}\";", ruleType.TrimEnd()));
sb.AppendLine(string.Format("\t\t\tValidationMessage = \"{0}\";", validationMessage.TrimEnd()));
// ...
sb.AppendLine(string.Format("\t\t\tSortOrder = {0};", sortOrder));
sb.AppendLine("\t\t}");
// properties
sb.AppendLine("\t\tpublic int RuleId { get { return _ruleId; } set { _ruleId = value; } }");
sb.AppendLine("\t\tpublic string RuleName { get { return _ruleName; } set { _ruleName = value; } }");
sb.AppendLine("\t\tpublic string RuleType { get { return _ruleType; } set { _ruleType = value; } }");
/// ... more properties -- omitted
sb.AppendLine(string.Format("\t\tpublic bool Test({0} entity) ", typeName));
sb.AppendLine("\t\t{");
// #############################################################
// NOTE: This is where the expression from the DB Column becomes
// the body of the Test Method, such as: return "entity.Prop1 < 5"
// #############################################################
sb.AppendLine(string.Format("\t\t\treturn {0};", expressionText.TrimEnd()));
sb.AppendLine("\t\t}"); // close method
sb.AppendLine("\t}"); // close Class
Beyond this I did make a class I called "DataRuleCollection", which implemented ICollection>. This enabled me to create a "TestAll" capability and an indexer for executing a specific rule by name. Here are the implementations for those two methods.
/// <summary>
/// Indexer which enables accessing rules in the collection by name
/// </summary>
/// <param name="ruleName">a rule name</param>
/// <returns>an instance of a data rule or null if the rule was not found.</returns>
public IDataRule<TEntity, bool> this[string ruleName]
{
get { return Contains(ruleName) ? list[ruleName] : null; }
}
// in this case the implementation of the Rules Collection is:
// DataRulesCollection<IDataRule<User>> and that generic flows through to the rule.
// there are also some supporting concepts here not otherwise outlined, such as a "FailedRules" IList
public bool TestAllRules(User target)
{
rules.FailedRules.Clear();
var result = true;
foreach (var rule in rules.Where(x => x.IsEnabled))
{
result = rule.Test(target);
if (!result)
{
rules.FailedRules.Add(rule);
}
}
return (rules.FailedRules.Count == 0);
}
MORE CODE: There was a request for the code related to the Code Generation. I encapsulated the functionality in a class called 'RulesAssemblyGenerator' which I have included below.
namespace Xxx.Services.Utils
{
public static class RulesAssemblyGenerator
{
static List<string> EntityTypesLoaded = new List<string>();
public static void Execute(string typeName, string scriptCode)
{
if (EntityTypesLoaded.Contains(typeName)) { return; }
// only allow the assembly to load once per entityType per execution session
Compile(new CSharpCodeProvider(), scriptCode);
EntityTypesLoaded.Add(typeName);
}
private static void Compile(CodeDom.CodeDomProvider provider, string source)
{
var param = new CodeDom.CompilerParameters()
{
GenerateExecutable = false,
IncludeDebugInformation = false,
GenerateInMemory = true
};
var path = System.Reflection.Assembly.GetExecutingAssembly().Location;
var root_Dir = System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "Bin");
param.ReferencedAssemblies.Add(path);
// Note: This dependencies list are included as assembly reference and they should list out all dependencies
// That you may reference in your Rules or that your entity depends on.
// some assembly names were changed... clearly.
var dependencies = new string[] { "yyyyyy.dll", "xxxxxx.dll", "NHibernate.dll", "ABC.Helper.Rules.dll" };
foreach (var dependency in dependencies)
{
var assemblypath = System.IO.Path.Combine(root_Dir, dependency);
param.ReferencedAssemblies.Add(assemblypath);
}
// reference .NET basics for C# 2.0 and C#3.0
param.ReferencedAssemblies.Add(@"C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll");
param.ReferencedAssemblies.Add(@"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll");
var compileResults = provider.CompileAssemblyFromSource(param, source);
var output = compileResults.Output;
if (compileResults.Errors.Count != 0)
{
CodeDom.CompilerErrorCollection es = compileResults.Errors;
var edList = new List<DataRuleLoadExceptionDetails>();
foreach (CodeDom.CompilerError s in es)
edList.Add(new DataRuleLoadExceptionDetails() { Message = s.ErrorText, LineNumber = s.Line });
var rde = new RuleDefinitionException(source, edList.ToArray());
throw rde;
}
}
}
}
If there are any other questions or comments or requests for further code samples, let me know.
How about using the workflow rules engine?
You can execute Windows Workflow Rules without Workflow see Guy Burstein's Blog: http://blogs.microsoft.co.il/blogs/bursteg/archive/2006/10/11/RuleExecutionWithoutWorkflow.aspx
and to programatically create your rules, see Stephen Kaufman's WebLog
http://blogs.msdn.com/b/skaufman/archive/2006/05/15/programmatically-create-windows-workflow-rules.aspx
This snippet compiles the Rules into fast executable code (using Expression trees) and does not need any complicated switch statements:
(Edit : full working example with generic method)
public Func<User, bool> CompileRule(Rule r)
{
var paramUser = Expression.Parameter(typeof(User));
Expression expr = BuildExpr(r, paramUser);
// build a lambda function User->bool and compile it
return Expression.Lambda<Func<User, bool>>(expr, paramUser).Compile();
}
You can then write:
List<Rule> rules = new List<Rule> {
new Rule ("Age", "GreaterThan", "21"),
new Rule ( "Name", "Equal", "John"),
new Rule ( "Tags", "Contains", "C#" )
};
// compile the rules once
var compiledRules = rules.Select(r => CompileRule(r)).ToList();
public bool MatchesAllRules(User user)
{
return compiledRules.All(rule => rule(user));
}
Here is the implementation of BuildExpr:
Expression BuildExpr(Rule r, ParameterExpression param)
{
var left = MemberExpression.Property(param, r.MemberName);
var tProp = typeof(User).GetProperty(r.MemberName).PropertyType;
ExpressionType tBinary;
// is the operator a known .NET operator?
if (ExpressionType.TryParse(r.Operator, out tBinary)) {
var right = Expression.Constant(Convert.ChangeType(r.TargetValue, tProp));
// use a binary operation, e.g. 'Equal' -> 'u.Age == 21'
return Expression.MakeBinary(tBinary, left, right);
} else {
var method = tProp.GetMethod(r.Operator);
var tParam = method.GetParameters()[0].ParameterType;
var right = Expression.Constant(Convert.ChangeType(r.TargetValue, tParam));
// use a method call, e.g. 'Contains' -> 'u.Tags.Contains(some_tag)'
return Expression.Call(left, method, right);
}
}
Note that I used 'GreaterThan' instead of 'greater_than' etc. - this is because 'GreaterThan' is the .NET name for the operator, therefore we don't need any extra mapping.
If you need custom names you can build a very simple dictionary and just translate all operators before compiling the rules:
var nameMap = new Dictionary<string, string> {
{ "greater_than", "GreaterThan" },
{ "hasAtLeastOne", "Contains" }
};
The code uses the type User for simplicity. You can replace User with a generic type T to have a generic Rule compiler for any types of objects. Also, the code should handle errors, like unknown operator name.
Note that generating code on the fly was possible even before the Expression trees API was introduced, using Reflection.Emit. The method LambdaExpression.Compile() uses Reflection.Emit under the covers (you can see this using ILSpy).