Say that I have this data frame:
1 2 3 4
100 8 12 5 14
99 1 6 4 3
98 2 5 4 11
97 5 3 7 2
<
You can use row()
and col()
to identify row/column relationships.
m <- read.table(text="
1 2 3 4
100 8 12 5 14
99 1 6 4 3
98 2 5 4 11
97 5 3 7 2")
vals <- sapply(2:8,
function(j) sum(m[row(m)+col(m)==j]))
or (as suggested in comments by ?@thelatemail)
vals <- sapply(split(as.matrix(m), row(m) + col(m)), sum)
data.frame(group=LETTERS[seq_along(vals)],sum=vals)
or (@Frank)
data.frame(vals = tapply(as.matrix(m),
(LETTERS[row(m) + col(m)-1]), sum))
as.matrix()
is required to make split()
work correctly ...
Here's a solution using stack()
, and aggregate()
, although it requires the second data.frame contain character vectors, as opposed to factors (could be forced with lapply(df2,as.character)
):
df1 <- data.frame(a=c(8,1,2,5), b=c(12,6,5,3), c=c(5,4,4,7), d=c(14,3,11,2) );
df2 <- data.frame(a=c('A','B','C','D'), b=c('B','C','D','E'), c=c('C','D','E','F'), d=c('D','E','F','G'), stringsAsFactors=F );
aggregate(sum~group,data.frame(sum=stack(df1)[,1],group=stack(df2)[,1]),sum);
## group sum
## 1 A 8
## 2 B 13
## 3 C 13
## 4 D 28
## 5 E 10
## 6 F 18
## 7 G 2
Another solution using bgoldst's definition of df1
and df2
sapply(unique(c(as.matrix(df2))),function(x) sum(df1[df2==x]))
Gives
#A B C D E F G
#8 13 13 28 10 18 2
(Not quite the format that you wanted, but maybe it's ok...)
Another aggregate
variation, avoiding the formula interface, which actually complicates matters in this instance:
aggregate(list(Sum=unlist(dat)), list(Group=LETTERS[c(row(dat) + col(dat))-1]), FUN=sum)
# Group Sum
#1 A 8
#2 B 13
#3 C 13
#4 D 28
#5 E 10
#6 F 18
#7 G 2