I have a data.table
that contains some groups. I operate on each group and some groups return numbers, others return NA
. For some reason data.ta
you can also do something like this :
dtb <- data.table(a=1:10)
mat <- ifelse(dtb == 9,NA,dtb$a)
The above command will give you matrix but you can change it back to data.table
new.dtb <- data.table(mat)
new.dtb
a
1: 1
2: 2
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: NA
10: 10
Hope this helps.
If you want to assign NAs to many variables, you could use the approach suggested here:
v_1 <- c(0,0,1,2,3,4,4,99)
v_2 <- c(1,2,2,2,3,99,1,0)
dat <- data.table(v_1,v_2)
for(n in 1:2) {
chari <- paste0(sprintf('v_%s' ,n), ' %in% c(0,99)')
charj <- sprintf('v_%s := NA_integer_', n)
dat[eval(parse(text=chari)), eval(parse(text=charj))]
}
From ?NA
NA is a logical constant of length 1 which contains a missing value indicator. NA can be coerced to any other vector type except raw. There are also constants NA_integer_, NA_real_, NA_complex_ and NA_character_ of the other atomic vector types which support missing values: all of these are reserved words in the R language.
You will have to specify the correct type for your function to work -
You can coerce within the function to match the type of x
(note we need any
for this to work for situations with more than 1 row in a subset!
f <- function(x) {if any((x==9)) {return(as(NA, class(x)))} else { return(x)}}
It might make more data.table sense to use set
(or :=
) to set / replace by reference.
set(dtb, i = which(dtb[,a]==9), j = 'a', value=NA_integer_)
Or :=
within [
using a vector scan for a==9
dtb[a == 9, a := NA_integer_]
Or :=
along with a binary search
setkeyv(dtb, 'a')
dtb[J(9), a := NA_integer_]
If you use the :=
or set
approaches, you don't appear to need to specify the NA
type
Both the following will work
dtb <- data.table(a=1:10)
setkeyv(dtb,'a')
dtb[a==9,a := NA]
dtb <- data.table(a=1:10)
setkeyv(dtb,'a')
set(dtb, which(dtb[,a] == 9), 'a', NA)
Error in
[.data.table
(DTc, J(9),:=
(a, NA)) : Type of RHS ('logical') must match LHS ('integer'). To check and coerce would impact performance too much for the fastest cases. Either change the type of the target column, or coerce the RHS of := yourself (e.g. by using 1L instead of 1)
with a reasonable large data.set where a
is replaced in situ
library(data.table)
set.seed(1)
n <- 1e+07
DT <- data.table(a = sample(15, n, T))
setkeyv(DT, "a")
DTa <- copy(DT)
DTb <- copy(DT)
DTc <- copy(DT)
DTd <- copy(DT)
DTe <- copy(DT)
f <- function(x) {
if (any(x == 9)) {
return(as(NA, class(x)))
} else {
return(x)
}
}
system.time({DT[a == 9, `:=`(a, NA_integer_)]})
## user system elapsed
## 0.95 0.24 1.20
system.time({DTa[a == 9, `:=`(a, NA)]})
## user system elapsed
## 0.74 0.17 1.00
system.time({DTb[J(9), `:=`(a, NA_integer_)]})
## user system elapsed
## 0.02 0.00 0.02
system.time({set(DTc, which(DTc[, a] == 9), j = "a", value = NA)})
## user system elapsed
## 0.49 0.22 0.67
system.time({set(DTc, which(DTd[, a] == 9), j = "a", value = NA_integer_)})
## user system elapsed
## 0.54 0.06 0.58
system.time({DTe[, `:=`(a, f(a)), by = a]})
## user system elapsed
## 0.53 0.12 0.66
# The are all the same!
all(identical(DT, DTa), identical(DT, DTb), identical(DT, DTc), identical(DT,
DTd), identical(DT, DTe))
## [1] TRUE
Unsurprisingly the binary search approach is the fastest