Unable to use summary.merge in tensorboard for separate training and evaluation summaries

前端 未结 1 1796
孤街浪徒
孤街浪徒 2021-02-20 13:52

I am trying to use tensorboard to watch the learning of a convolutional neural net. I am doing good with the tf.summary.merge_all function to create a merged summary. However, I

相关标签:
1条回答
  • 2021-02-20 14:52

    I figured it out. I need to give the summaries names before merging. The code below solves the problem:

    with tf.name_scope('Cost'):
        cross_entropy = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=y_logits, labels=y))
        opt = tf.train.AdamOptimizer(learning_rate=0.000003)
        optimizer = opt.minimize(cross_entropy)
        grads = opt.compute_gradients(cross_entropy, [b_fc_loc2])
        cost_sum = tf.summary.scalar('val_cost', cross_entropy)
        training_cost_sum = tf.summary.scalar('train_cost', cross_entropy)
    
    
    with tf.name_scope('accuracy'):
        correct_prediction = tf.equal(tf.argmax(y_logits, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
        train_accuracy = accuracy
        accuracy_sum = tf.summary.scalar('val_accuracy', accuracy)
        training_accuracy_sum = tf.summary.scalar('train_accuracy', accuracy)
    
    
    with tf.Session() as sess:
        writer = tf.summary.FileWriter('./logs/{}/{}'.format(session_name, run_num), sess.graph)
        sess.run(tf.global_variables_initializer())
        train_merged = tf.summary.merge([training_accuracy_sum, training_cost_sum])
    
    0 讨论(0)
提交回复
热议问题