Unprecise p-values in Stargazer

前端 未结 3 1387
傲寒
傲寒 2021-02-20 10:32

I want the same stars for significancies in regression output in stargazer as in the \"normal output\".

I produce data

library(\"stargazer\"); library(\"         


        
相关标签:
3条回答
  • 2021-02-20 11:08

    It may be a minor issue but Richard's answer is actually not entirely correct - his stargazer output does not report any standard errors nor potential significance stars for the variable x.

    Also when reporting only a single model in stargazer manual coefficients, se, p and t values have to be provided in a list. Otherwise stargazer will report an empty list.

    The (slightly) corrected example:

    test <- coeftest(model, vcov = vcovHC(model, type="HC3"))
    ses <- list(test[, 2])
    pvals <- list(test[, 4])
    stargazer(model, type="text", p=pvals, se=ses)
    

    Output:

    =======================================================================
                                             Dependent variable:           
                                  -----------------------------------------
                                            Daily added investors          
                                                  negative                 
                                                  binomial                 
    -----------------------------------------------------------------------
    log(lag_raised_amount + 1)                    -0.466***                
                                                   (0.124)                 
    
    lag_target1                                   -0.661***                
                                                   (0.134)                 
    
    Constant                                      -3.480**                 
                                                   (1.290)                 
    
    -----------------------------------------------------------------------
    Observations                                    6,513                  
    Log Likelihood                                 -8,834                
    theta                                     1.840*** (0.081)             
    Akaike Inf. Crit.                              17,924                
    =======================================================================
    Note:                         + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
    
    0 讨论(0)
  • 2021-02-20 11:12

    There are inherent dangers associated with the se argument.

    When using this approach, the user should be cautious wrt the arguments t.auto and p.auto, both of which default to TRUE. I think it would be cautious to set them both to FALSE, and supply manually t and p values.

    Failure to do so, and you risk getting significance stars not in sync with the displayed p-values. (I suspect that stargazer will simply reuse the se, which are now different from the default ones, and recompute the displayed stars using this input; which will naturally yield unexpected results.)

    See also:

    • Displaying p-values instead of SEs in parenthesis
    0 讨论(0)
  • 2021-02-20 11:31

    You need to provide the p values associated with your coeftest. From the man page.

    p a list of numeric vectors that will replace the default p-values for each model. Matched by element names. These will form the basis of decisions about significance stars

    The following should work.

    test <- coeftest(model, vcov = vcovHC(model, type="HC3"))
    ses <- test[, 2]
    pvals <- test[, 4]
    stargazer(model, type="text", p=pvals, se=ses)
    

    This provides the following.

    ===============================================
                            Dependent variable:    
                        ---------------------------
                                  log(y)           
    -----------------------------------------------
    x                            -0.00005          
    
    
    Constant                     6.956***          
                                  (0.003)          
    
    -----------------------------------------------
    Observations                    100            
    R2                             0.026           
    Adjusted R2                    0.016           
    Residual Std. Error       0.027 (df = 98)      
    F Statistic             2.620 (df = 1; 98)     
    ===============================================
    Note:               *p<0.1; **p<0.05; ***p<0.01
    
    0 讨论(0)
提交回复
热议问题