I try to create a variable with paste() in a mutate_() function (dplyr).
I try to adapt code with this answer (dplyr - mutate: use dynamic variable names) but it doesn\'
dplyr 0.7.0
onwards does not require use of mutate_
. Here is a solution using :=
to dynamically assign variable names and helper functions quo name
.
It will be helpful to read vignette("programming", "dplyr")
for more info. See also Use dynamic variable names in `dplyr` for older versions of dplyr.
df <- df %>%
group_by(segment) %>%
mutate( !!paste0('MeanSum',quo_name(nameVarPeriod1)) :=
mean(!!as.name(paste0('Sum',quo_name(nameVarPeriod1)))))
Using the new across
function in dplyr 1.0.0
we can set names using glue
style syntax and can include the function name and original column as part of the name:
my_fn <- function(nameVarPeriod1 = 'A2'){
col_list <- paste0('Sum',nameVarPeriod1)
df %>%
group_by(segment) %>%
mutate(across(col_list, list(mean=mean), .names = "{fn}{col}"))
}
my_fn()
# segment SumA2 meanSumA2
# <fct> <dbl> <dbl>
# 1 Seg5 107585. 107585.
# 2 Seg1 127344. 82080.
# 3 Seg4 205810. 205810.
# 4 Seg2 138453. 81528.
# 5 Seg2 24603. 81528.
# 6 Seg14 44444. 54422.
# 7 Seg11 103672 103672
# 8 Seg6 88696. 88696.
# 9 Seg14 64400 54422.
#10 Seg1 36816. 82080.
Not sure what is your purpose of renaming summarized column name with original column names. But if you are looking for a solution where you want to have sum
of multiple columns and hence wants to rename those then dplyr::mutate_at
does it for you.
library(dplyr)
df %>% group_by(segment) %>%
mutate(SumA3 = SumA2) %>% #Added another column to demonstrate
mutate_at(vars(starts_with("SumA")), funs(mean = "mean"))
# segment SumA2 SumA3 SumA2_mean SumA3_mean
# <fctr> <dbl> <dbl> <dbl> <dbl>
# 1 Seg5 107585 107585 107585 107585
# 2 Seg1 127344 127344 82080 82080
# 3 Seg4 205810 205810 205810 205810
# 4 Seg2 138453 138453 81528 81528
# 5 Seg2 24603 24603 81528 81528
# 6 Seg14 44444 44444 54422 54422
# 7 Seg11 103672 103672 103672 103672
# 8 Seg6 88696 88696 88696 88696
# 9 Seg14 64400 64400 54422 54422
# 10 Seg1 36816 36816 82080 82080