I have a huge DataFrame where the columns aren\'t ever in order nor do I know their name.
What do I do to find all the columns which are datetime types?
Most of
You can use pandas.DataFrame.select_dtypes(), and include only the datetime64 type.
df.select_dtypes(include=['datetime64'])
Demo
>>> df
dts1 dts2 ints
0 2012-01-01 2004-01-01 0
1 2012-01-02 2004-01-02 1
2 2012-01-03 2004-01-03 2
.. ... ... ...
97 2012-04-07 2004-04-07 97
98 2012-04-08 2004-04-08 98
99 2012-04-09 2004-04-09 99
>>> df.select_dtypes(include=['datetime64'])
dts1 dts2
0 2012-01-01 2004-01-01
1 2012-01-02 2004-01-02
2 2012-01-03 2004-01-03
.. ... ...
97 2012-04-07 2004-04-07
98 2012-04-08 2004-04-08
99 2012-04-09 2004-04-09
Since each column of a pandas DataFrame is a pandas Series simply iterate through list of column names and conditionally check for series.dtype
of datetime (typically datetime64[ns]):
for col in df.columns:
if df[col].dtype == 'datetime64[ns]':
print(col)
Or as list comprehension:
[col for col in df.columns if df[col].dtype == 'datetime64[ns]']
Or as a series filter:
df.dtypes[df.dtypes=='datetime64[ns]']