I\'m currently working on a homework problem that asks me to find out the number of machine code instructions that are executed when running a short program I wrote in C.
One way of doing this could be to manually instrument each instruction with a counting instruction. There are several ways of doing this -
You could modify the Instruction emitter part of any open source compiler (gcc/LLVM) to emit a counting instruction before every instruction. I can add to the answer the exact way of doing this in LLVM if you are interested. But I believe that the second method I am giving here will be easier to implement and will work across most compilers.
You can instrument the instructions post compilation. Most compilers provide the option to generate readable assembly instead of the object files. The flag for gcc/clang is -S
.
For the following program
#include <stdio.h>
int main_real(int argc, char* argv[]) {
printf("hello world\n");
return 0;
}
my compiler produces the following .s
file -
.section __TEXT,__text,regular,pure_instructions
.build_version macos, 10, 14
.globl _main_real ## -- Begin function main
.p2align 4, 0x90
_main_real: ## @main_real
.cfi_startproc
## %bb.0:
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset %rbp, -16
movq %rsp, %rbp
.cfi_def_cfa_register %rbp
subq $32, %rsp
leaq L_.str(%rip), %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rax, %rdi
movb $0, %al
callq _printf
xorl %ecx, %ecx
movl %eax, -20(%rbp) ## 4-byte Spill
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq
.cfi_endproc
## -- End function
.section __TEXT,__cstring,cstring_literals
L_.str: ## @.str
.asciz "hello world\n"
.subsections_via_symbols
It is easy to see here that everything that starts with <tab>
not followed by a .
is an instruction.
Now we have to simple program that finds all such instructions and instrument them. You can do this easily with perl
.
But before we actually instrument the code, we have to figure out an appropriate instrumenting instruction. This will depend a lot on the architecture and the target operating system. So I will provide an example for X86_64.
It is clear why we need to instrument BEFORE the instructions rather than AFTER them, so as to also count the branching instructions.
Assuming a global variables __r13_save
and __instruction_counter
initialized to zero, we can insert the instruction -
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
As you can see we have used the rip
relative addressing mode, which should be fine for most programs that a beginner writes (bigger programs might have issues).
We have used leaq
here instead of incq
to avoid clobbering the flags that are used by the program for control flow. (As suggested by @PeterCordes in the comments.)
This instrumentation also works correctly for single threaded programs since we are using a global counter for instructions and stashing away the %r13
register. For extending the above for multithreaded program, one will have to use thread local storage and instrument the thread creation functions too.
Also, the variables __r13_save
and __instruction_counter
are frequently accessed and should always be in the L1 cache, making this instrumentation not that costly.
Now to instrument the instructions we use perl as -
cat input.s | perl -pe 's/^(\t[^.])/\tmovq %r13, __r13_save(%rip)\n\tmovq __instruction_counter(%rip), %r13\n\tleaq 1(%r13), %r13\n\tmovq %r13, __instruction_counter(%rip)\n\tmovq %r13, __r13_save(%rip)\n\1/' > output.s
For the above sample program this generates
.section __TEXT,__text,regular,pure_instructions
.build_version macos, 10, 14
.globl _main_real ## -- Begin function main_real
.p2align 4, 0x90
_main_real: ## @main_real
.cfi_startproc
## %bb.0:
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset %rbp, -16
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movq %rsp, %rbp
.cfi_def_cfa_register %rbp
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
subq $32, %rsp
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
leaq L_.str(%rip), %rax
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movl %edi, -4(%rbp)
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movq %rsi, -16(%rbp)
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movq %rax, %rdi
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movb $0, %al
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
callq _printf
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
xorl %ecx, %ecx
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movl %eax, -20(%rbp) ## 4-byte Spill
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
movl %ecx, %eax
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
addq $32, %rsp
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
popq %rbp
movq %r13, __r13_save(%rip)
movq __instruction_counter(%rip), %r13
leaq 1(%r13), %r13
movq %r13, __instruction_counter(%rip)
movq %r13, __r13_save(%rip)
retq
.cfi_endproc
## -- End function
.section __TEXT,__cstring,cstring_literals
L_.str: ## @.str
.asciz "hello world\n"
.subsections_via_symbols
Now we also need to create this variable somewhere. This can be done by creating a simple c wrapper.c as -
#include <stdio.h>
long long int __instruction_counter;
long long int __r13_save;
int main_real(int, char* []);
int main(int argc, char* argv[]) {
int ret = main_real(argc, argv);
printf("Total instructions = %lld\n", __instruction_counter);
return ret;
}
You might see the function main_real
. So in your actual program you have to create a main_real
instead of main
.
Finally link everything up as -
clang output.s wrapper.c -o a.out
and execute your program. Your code should run normally and print the instruction count before it exits.
You might have to take care of name mangling of the __instruction_counter
variable. For some ABIs the compiler adds an extra _
at the beginning. In that case you will have to add an extra _
to the perl command. You can check the exact name for the variable by also generating the assembly for the wrapper.
On running the above example I get -
hello world
Total instructions = 15
Which matches the exact number of instruction our function has.
You might have noticed that this counts only the number of instructions in the code you have written and compiled. Not in the printf
function for instance. That is usually a difficult problem to tackle with static instrumentation.
One caveat here is that your program has to exit "normally" i.e. by returning from main
. If it calls exit
or abort
, you will not be able to see the instruction count. You can also provide an instrumented version of exit
and abort
to solve that problem.
With a compiler based approach this can be made more efficient by adding a single addq
instruction for each basic block with the parameter being the number of instruction that BB has, since once the control flow enters a basic block, it is bound to go through it.
You can use Godbolt's Compiler Explorer to compile your program and display the assembly code for various compilers and options.
Then count the number of instructions for every fragment, ie: sequence of statements upto and including the first test.
Then instrument you code: add a global variable instruction_count
, initialized to the number of instructions in the main
function epilog and increment this variable at the beginning of each fragment by the number of instructions you counted in the previous step. and print this number just before returning from the main
function.
You will get the number of instructions that would be executed by the uninstrumented program for whatever input is provided to the program, for a given combination of architecture, compiler and options, but not including instructions executed in library functions nor during the startup and exit phases.
As I mentioned in my top comments, one way to do this is to write a program that feeds commands to gdb
.
Specifically, the si
command (step ISA instruction).
I couldn't get this to work with pipes, but I was able to get it to work by putting gdb
under a pseudo-tty.
Edit: After thinking about it, I came up with a version that uses ptrace
directly on the target program instead of sending commands to gdb
. It is much faster [100x faster] and [probably] more reliable
So, here's the gdb
based control program. Note that this must be linked with -lutil
.
// gdbctl -- gdb control via pseudo tty
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <fcntl.h>
#include <errno.h>
#include <poll.h>
#include <pty.h>
#include <utmp.h>
#include <sys/types.h>
#include <sys/wait.h>
int opt_d; // 1=show debug output
int opt_e; // 1=echo gdb output
int opt_f; // 1=set line buffered output
int opt_x; // si repetition factor
int zpxlvl; // current trace level
int ptypar; // parent PTY fd
int ptycld; // child PTY fd
char name[100]; // child PTY device name
unsigned long long sicount; // single step count
const char *gdb = "(gdb) "; // gdb's prompt string
const char *waitstr; // currently active "wait for" string
char *waitstop[8] = { NULL }; // string that shows run is done
int stopflg; // 1=waitstop seen
char sicmd[100];
char waitbuf[10000]; // large buffer to scan for strings
char *waitdst = waitbuf; // current end position
pid_t pidgdb; // gdb's pid
pid_t pidfin; // stop pid
int status; // gdb's final status
double tvelap; // start time
#ifndef _USE_ZPRT_
#define _USE_ZPRT_ 1
#endif
static inline int
zprtok(int lvl)
{
return (_USE_ZPRT_ && (opt_d >= lvl));
}
#define dbg(_lvl,_fmt...) \
do { \
if (zprtok(_lvl)) \
printf(_fmt); \
} while (0)
// tvgetf -- get high precision time
double
tvgetf(void)
{
struct timespec ts;
double sec;
clock_gettime(CLOCK_REALTIME,&ts);
sec = ts.tv_nsec;
sec /= 1e9;
sec += ts.tv_sec;
return sec;
}
// xstrcat -- concatenate a string
char *
xstrcat(char *dst,const char *src)
{
int chr;
for (chr = *src++; chr != 0; chr = *src++)
*dst++ = chr;
*dst = 0;
return dst;
}
// gdbexit -- check for gdb termination
void
gdbexit(void)
{
// NOTE: this should _not_ happen
do {
if (pidgdb == 0)
break;
pidfin = waitpid(pidgdb,&status,WNOHANG);
if (pidfin == 0)
break;
pidgdb = 0;
printf("gdbexit: WAITPID status=%8.8X\n",status);
exit(8);
} while (0);
}
// gdbwaitpoll -- wait for prompt string
void
gdbwaitpoll(const char *buf)
{
char *cp;
char **wstr;
do {
gdbexit();
if (waitstr == NULL)
break;
// concatenate to big buffer
dbg(2,"BUF '%s'\n",buf);
waitdst = xstrcat(waitdst,buf);
// check for final termination string (e.g. "exited with")
for (wstr = waitstop; *wstr != NULL; ++wstr) {
cp = *wstr;
dbg(2,"TRYSTOP '%s'\n",cp);
cp = strstr(waitbuf,cp);
if (cp != NULL) {
stopflg = 1;
waitstop[0] = NULL;
}
}
// check for the prompt (e.g. "(gdb) ")
cp = strstr(waitbuf,waitstr);
if (cp == NULL)
break;
dbg(1,"HIT on '%s'\n",waitstr);
// got it reset things
waitbuf[0] = 0;
waitdst = waitbuf;
waitstr = NULL;
} while (0);
}
// gdbrecv -- process input from gdb
void
gdbrecv(void)
{
struct pollfd fds[1];
struct pollfd *fd = &fds[0];
int xlen;
char buf[1000];
fd->fd = ptypar;
fd->events = POLLIN;
while (1) {
gdbexit();
#if 1
int nfd = poll(fds,1,1);
if (nfd <= 0) {
if (waitstr != NULL)
continue;
break;
}
#endif
// get a chunk of data
xlen = read(ptypar,buf,sizeof(buf) - 1);
dbg(1,"gdbrecv: READ xlen=%d\n",xlen);
if (xlen < 0) {
printf("ERR: %s\n",strerror(errno));
break;
}
// wait until we've drained every bit of data
if (xlen == 0) {
if (waitstr != NULL)
continue;
break;
}
// add EOS char
buf[xlen] = 0;
dbg(1,"ECHO: ");
if (opt_e)
fwrite(buf,1,xlen,stdout);
// wait for our prompt
gdbwaitpoll(buf);
}
}
// gdbwaitfor -- set up prompt string to wait for
void
gdbwaitfor(const char *wstr,int loopflg)
{
waitstr = wstr;
if (waitstr != NULL)
dbg(1,"WAITFOR: '%s'\n",waitstr);
while ((waitstr != NULL) && loopflg && (pidgdb != 0))
gdbrecv();
}
// gdbcmd -- send command to gdb
void
gdbcmd(const char *str,const char *wstr)
{
int rlen = strlen(str);
int xlen = 0;
#if 0
printf("CMD/%d: %s",rlen,str);
#endif
gdbwaitfor(wstr,0);
for (; rlen > 0; rlen -= xlen, str += xlen) {
gdbexit();
xlen = write(ptypar,str,rlen);
if (xlen <= 0)
break;
dbg(1,"RET: rlen=%d xlen=%d\n",rlen,xlen);
gdbrecv();
}
dbg(1,"END/%d\n",xlen);
}
// gdbctl -- control gdb
void
gdbctl(int argc,char **argv)
{
// this is the optimal number for speed
if (opt_x < 0)
opt_x = 100;
if (opt_x <= 1) {
opt_x = 1;
sprintf(sicmd,"si\n");
}
else
sprintf(sicmd,"si %d\n",opt_x);
// create pseudo TTY
openpty(&ptypar,&ptycld,name,NULL,NULL);
pidgdb = fork();
// launch gdb
if (pidgdb == 0) {
//sleep(1);
login_tty(ptycld);
close(ptypar);
char *gargs[8];
char **gdst = gargs;
*gdst++ = "gdb";
*gdst++ = "-n";
*gdst++ = "-q";
*gdst++ = *argv;
*gdst = NULL;
execvp(gargs[0],gargs);
exit(9);
}
// make input from gdb non-blocking
#if 1
int flags = fcntl(ptypar,F_GETFL,0);
flags |= O_NONBLOCK;
fcntl(ptypar,F_SETFL,flags);
#endif
// wait
char **wstr = waitstop;
*wstr++ = "exited with code";
*wstr++ = "Program received signal";
*wstr++ = "Program terminated with signal";
*wstr = NULL;
printf("TTY: %s\n",name);
printf("SI: %d\n",opt_x);
printf("GDB: %d\n",pidgdb);
#if 1
sleep(2);
#endif
gdbwaitfor(gdb,1);
// prevent kill or quit commands from hanging
gdbcmd("set confirm off\n",gdb);
// set breakpoint at earliest point
#if 1
gdbcmd("b _start\n",gdb);
#else
gdbcmd("b main\n",gdb);
#endif
// skip over target program name
--argc;
++argv;
// add extra arguments
do {
if (argc <= 0)
break;
char xargs[1000];
char *xdst = xargs;
xdst += sprintf(xdst,"set args");
for (int avidx = 0; avidx < argc; ++avidx, ++argv) {
printf("XARGS: '%s'\n",*argv);
xdst += sprintf(xdst," %s",*argv);
}
xdst += sprintf(xdst,"\n");
gdbcmd(xargs,gdb);
} while (0);
// run the program -- it will stop at the breakpoint we set
gdbcmd("run\n",gdb);
// disable the breakpoint for speed
gdbcmd("disable\n",gdb);
tvelap = tvgetf();
while (1) {
// single step an ISA instruction
gdbcmd(sicmd,gdb);
// check for gdb aborting
if (pidgdb == 0)
break;
// check for target program exiting
if (stopflg)
break;
// advance count of ISA instructions
sicount += opt_x;
}
// get elapsed time
tvelap = tvgetf() - tvelap;
// tell gdb to quit
gdbcmd("quit\n",NULL);
// wait for gdb to completely terminate
if (pidgdb != 0) {
pidfin = waitpid(pidgdb,&status,0);
pidgdb = 0;
}
// close PTY units
close(ptypar);
close(ptycld);
}
// main -- main program
int
main(int argc,char **argv)
{
char *cp;
--argc;
++argv;
for (; argc > 0; --argc, ++argv) {
cp = *argv;
if (*cp != '-')
break;
switch (cp[1]) {
case 'd':
cp += 2;
opt_d = (*cp != 0) ? atoi(cp) : 1;
break;
case 'e':
cp += 2;
opt_e = (*cp != 0) ? atoi(cp) : 1;
break;
case 'f':
cp += 2;
opt_f = (*cp != 0) ? atoi(cp) : 1;
break;
case 'x':
cp += 2;
opt_x = (*cp != 0) ? atoi(cp) : -1;
break;
}
}
if (argc == 0) {
printf("specify target program\n");
exit(1);
}
// set output line buffering
switch (opt_f) {
case 0:
break;
case 1:
setlinebuf(stdout);
break;
default:
setbuf(stdout,NULL);
break;
}
gdbctl(argc,argv);
// print statistics
printf("%llu instructions -- ELAPSED: %.9f -- %.3f insts / sec\n",
sicount,tvelap,(double) sicount / tvelap);
return 0;
}
Here's a sample test program:
// tgt -- sample slave/test program
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
int opt_S;
int glob;
void
dumb(int x)
{
glob += x;
}
int
spin(int lim)
{
int x;
for (x = 0; x < lim; ++x)
dumb(x);
return x;
}
int
main(int argc,char **argv)
{
char *cp;
int lim;
int *ptr;
int code;
--argc;
++argv;
for (; argc > 0; --argc, ++argv) {
cp = *argv;
if (*cp != '-')
break;
switch (cp[1]) {
case 'S':
opt_S = cp[2];
break;
}
}
switch (opt_S) {
case 'f': // cause segfault
ptr = NULL;
*ptr = 23;
code = 91;
break;
case 'a': // abort
abort();
code = 92;
break;
case 't': // terminate us
signal(SIGTERM,SIG_DFL);
#if 0
kill(getpid(),SIGTERM);
#else
raise(SIGTERM);
#endif
code = 93;
break;
default:
code = 0;
break;
}
if (argc > 0)
lim = atoi(argv[0]);
else
lim = 10000;
lim = spin(lim);
lim &= 0x7F;
if (code == 0)
code = lim;
return code;
}
Here's a version that uses ptrace
that is much faster than the version that uses gdb
:
// ptxctl -- control via ptrace
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
//#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/ptrace.h>
#include <sys/user.h>
int opt_d; // 1=show debug output
int opt_e; // 1=echo progress
int opt_f; // 1=set line buffered output
unsigned long long sicount; // single step count
int stopflg; // 1=stop seen
pid_t pidtgt; // gdb's pid
pid_t pidfin; // stop pid
int status; // target's final status
char statbuf[1000]; // status buffer
int coredump; // 1=core dumped
int zpxlvl; // current trace level
int regsidx; // regs index
struct user_regs_struct regs[2]; // current regs
#define REGSALL(_cmd) \
_cmd(r15) \
_cmd(r14) \
_cmd(r13) \
_cmd(r12) \
_cmd(rbp) \
_cmd(rbx) \
_cmd(r11) \
_cmd(r10) \
_cmd(r9) \
_cmd(r8) \
_cmd(rax) \
_cmd(rcx) \
_cmd(rdx) \
_cmd(rsi) \
_cmd(rdi) \
_cmd(orig_rax) \
/*_cmd(rip)*/ \
_cmd(cs) \
_cmd(eflags) \
_cmd(rsp) \
_cmd(ss) \
_cmd(fs_base) \
_cmd(gs_base) \
_cmd(ds) \
_cmd(es) \
_cmd(fs) \
_cmd(gs)
#define REGSDIF(_reg) \
if (cur->_reg != prev->_reg) \
printf(" %16.16llX " #_reg "\n",cur->_reg);
double tvelap; // start time
#ifndef _USE_ZPRT_
#define _USE_ZPRT_ 1
#endif
static inline int
zprtok(int lvl)
{
return (_USE_ZPRT_ && (opt_d >= lvl));
}
#define dbg(_lvl,_fmt...) \
do { \
if (zprtok(_lvl)) \
printf(_fmt); \
} while (0)
// tvgetf -- get high precision time
double
tvgetf(void)
{
struct timespec ts;
double sec;
clock_gettime(CLOCK_REALTIME,&ts);
sec = ts.tv_nsec;
sec /= 1e9;
sec += ts.tv_sec;
return sec;
}
// ptxstatus -- decode status
char *
ptxstatus(int status)
{
int zflg;
int signo;
char *bp;
bp = statbuf;
*bp = 0;
// NOTE: do _not_ use zprtok here -- we need to force this on final
zflg = (opt_d >= zpxlvl);
do {
if (zflg)
bp += sprintf(bp,"%8.8X",status);
if (WIFSTOPPED(status)) {
signo = WSTOPSIG(status);
if (zflg)
bp += sprintf(bp," WIFSTOPPED signo=%d",signo);
switch (signo) {
case SIGTRAP:
break;
default:
stopflg = 1;
break;
}
}
if (WIFEXITED(status)) {
if (zflg)
bp += sprintf(bp," WIFEXITED code=%d",WEXITSTATUS(status));
stopflg = 1;
}
if (WIFSIGNALED(status)) {
signo = WTERMSIG(status);
if (zflg)
bp += sprintf(bp," WIFSIGNALED signo=%d",signo);
if (WCOREDUMP(status)) {
coredump = 1;
stopflg = 1;
if (zflg)
bp += sprintf(bp," -- core dumped");
}
}
} while (0);
return statbuf;
}
// ptxcmd -- issue ptrace command
long
ptxcmd(enum __ptrace_request cmd,void *addr,void *data)
{
long ret;
dbg(zpxlvl,"ptxcmd: ENTER cmd=%d addr=%p data=%p\n",cmd,addr,data);
ret = ptrace(cmd,pidtgt,addr,data);
dbg(zpxlvl,"ptxcmd: EXIT ret=%ld\n",ret);
return ret;
}
// ptxwait -- wait for target to be stopped
void
ptxwait(const char *reason)
{
dbg(zpxlvl,"ptxwait: %s pidtgt=%d\n",reason,pidtgt);
pidfin = waitpid(pidtgt,&status,0);
// NOTE: we need this to decide on stop status
ptxstatus(status);
dbg(zpxlvl,"ptxwait: %s status=(%s) pidfin=%d\n",
reason,statbuf,pidfin);
}
// ptxwhere -- show where we are
void
ptxwhere(int initflg)
{
struct user_regs_struct *cur;
struct user_regs_struct *prev;
do {
prev = ®s[regsidx];
if (initflg) {
ptxcmd(PTRACE_GETREGS,NULL,prev);
break;
}
regsidx = ! regsidx;
cur = ®s[regsidx];
ptxcmd(PTRACE_GETREGS,NULL,cur);
printf("RIP: %16.16llX (%llu)\n",cur->rip,sicount);
if (opt_e < 2)
break;
REGSALL(REGSDIF);
} while (0);
}
// ptxctl -- control ptrace
void
ptxctl(int argc,char **argv)
{
pidtgt = fork();
// launch target program
if (pidtgt == 0) {
pidtgt = getpid();
ptxcmd(PTRACE_TRACEME,NULL,NULL);
execvp(argv[0],argv);
exit(9);
}
#if 0
sleep(1);
#endif
zpxlvl = 1;
#if 0
ptxwait("SETUP");
#endif
// attach to tracee
// NOTE: we do _not_ need to do this because child has done TRACEME
#if 0
dbg(zpxlvl,"ptxctl: PREATTACH\n");
ptxcmd(PTRACE_ATTACH,NULL,NULL);
dbg(zpxlvl,"ptxctl: POSTATTACH\n");
#endif
// wait for initial stop
#if 1
ptxwait("INIT");
#endif
if (opt_e)
ptxwhere(1);
dbg(zpxlvl,"ptxctl: START\n");
tvelap = tvgetf();
zpxlvl = 2;
while (1) {
dbg(zpxlvl,"ptxctl: SINGLESTEP\n");
ptxcmd(PTRACE_SINGLESTEP,NULL,NULL);
ptxwait("WAIT");
sicount += 1;
// show where we are
if (opt_e)
ptxwhere(0);
dbg(zpxlvl,"ptxctl: STEPCOUNT sicount=%lld\n",sicount);
// stop when target terminates
if (stopflg)
break;
}
zpxlvl = 0;
ptxstatus(status);
printf("ptxctl: STATUS (%s) pidfin=%d\n",statbuf,pidfin);
// get elapsed time
tvelap = tvgetf() - tvelap;
}
// main -- main program
int
main(int argc,char **argv)
{
char *cp;
--argc;
++argv;
for (; argc > 0; --argc, ++argv) {
cp = *argv;
if (*cp != '-')
break;
switch (cp[1]) {
case 'd':
cp += 2;
opt_d = (*cp != 0) ? atoi(cp) : 1;
break;
case 'e':
cp += 2;
opt_e = (*cp != 0) ? atoi(cp) : 1;
break;
case 'f':
cp += 2;
opt_f = (*cp != 0) ? atoi(cp) : 1;
break;
}
}
if (argc == 0) {
printf("specify target program\n");
exit(1);
}
// set output line buffering
switch (opt_f) {
case 0:
break;
case 1:
setlinebuf(stdout);
break;
default:
setbuf(stdout,NULL);
break;
}
ptxctl(argc,argv);
// print statistics
printf("%llu instructions -- ELAPSED: %.9f -- %.3f insts / sec\n",
sicount,tvelap,(double) sicount / tvelap);
return 0;
}
Terminology: what you're asking for is dynamic instruction count. e.g. counting an instruction inside a loop every time it's executed. This is usually roughly correlated with performance, but instructions-per-cycle can vary wildly.
Something people also look at is static instruction count (or more usually just code-size, because that's what really matters for instruction-cache footprint, and disk-load times). For variable-length instruction sets like x86, those are correlated but not the same thing. On a RISC with fixed-length instructions, like MIPS or AArch64, it's closer but you still have padding for alignment of the start of functions, for example. That's a totally separate metric. gcc -Os
optimizes for code-size while trying not to sacrifice to much speed.
If you're on Linux, use gcc -O2 foo.c
to compile your code. -O2
doesn't enable auto-vectorization for gcc. (It does for clang). It's probably a good baseline level of optimization that will get rid of stuff in your C code that doesn't actually need to happen, to avoid silly differences between using more or fewer tmp variables to break up a big expression. Maybe use -Og
if you want minimal optimization, or -O0
if you want really dumb braindead code that compiles each statement separately and never keeps anything in registers between statements. (Why does clang produce inefficient asm with -O0 (for this simple floating point sum)?).
Yes, it matters a huge amount how you compile. gcc -O3 -march=native -ffast-math
might use a lot fewer instructions, if it auto-vectorizes a loop.
To stop your code from optimizing away, take an input from a command-line arg, or read it from a volatile
variable. Like volatile int size_volatile = 1234;
int size = size_volatile;
. And return or print a result, because if the program has no side-effects then the most efficient implementation is to just exit immediately.
Then run perf stat ./a.out
. That will use hardware performance counters to give you total instructions executed on behalf of your process, including inside the kernel. (Along with other counters, like CPU core clock cycles, and some software counters like page-faults
and time in microseconds.)
To count only user-space instructions, use perf stat -e instructions:u ./a.out
. That will still be a very big number even for a simple "hello world" program, like 180k, because that includes dynamic-linker startup and all the code that runs inside library functions. And CRT startup code that calls your main
, and that makes an exit
system call with main
's return value, if you return instead of calling exit(3)
.
You might statically link your C program to reduce that startup overhead, by compiling with gcc -O2 -static -fno-stack-protector -fno-pie -no-pie
perf
counting instructions:u
seems to be pretty accurate on my Skylake CPU. A statically-linked x86-64 binary that contains only 2 instructions, mov eax, 231
/ syscall
, is counted as 3 instructions. Probably there's one extra instruction being counted in the transition between kernel and user mode, but that's pretty minor.
$ perf stat -e instructions:u ./exit # hand-written in asm to check for perf overhead
Performance counter stats for './exit':
3 instructions:u
0.000651529 seconds time elapsed
A statically-linked binary that calls puts
twice counts 33,202 instructions:u
, compiled with gcc -O2 -static -fno-stack-protector -fno-pie -no-pie hello.c
. Seems reasonable for glibc init functions, including stdio, and CRT startup stuff before calling main
. (main
itself only has 8 instructions, which I checked with objdump -drwC -Mintel a.out | less
).
Number of executed Instructions different for Hello World program Nasm Assembly and C
@MichaelPetch's answer shows how to use an alternate libc (MUSL) that doesn't need startup code to run for its printf
to work. So you can compile a C program and set its main
as the ELF entry point (and call _exit()
instead of returning).
How can I profile C++ code running on Linux? There are tons of profiling tools for finding hotspots, and expensive functions (including the time spent in functions they call, i.e. stack backtrace profiling). Mostly this isn't about counting instructions, though.
These are the heavy duty tools for counting instructions, including counting only specific kinds of instructions.
Intel® Software Development Emulator (SDE) This is based on PIN, and is handy for things like testing AVX512 code on a dev machine that doesn't support AVX512. (It dynamically recompiles so most instructions run natively, but unsupported instructions call an emulation routine.)
For example, sde64 -mix -- ./my_program
will print an instruction-mix for your program, with total counts for each different instruction, and breakdowns by categories. See libsvm compiled with AVX vs no AVX for an example of the kind of output.
It also gives you a table of total dynamic instruction counts per-function, as well as per-thread and global. SDE mix output doesn't work well on PIE executable, though: it thinks the dynamic linker is the executable (because it is), so compile with gcc -O2 -no-pie -fno-pie prog.c -o prog
. It still doesn't see the puts
calls or main
itself in the profile output for a hello world test program, though, and I don't know why not.
Calculating “FLOP” using Intel® Software Development Emulator (Intel® SDE) An example of using SDE to count certain kinds of instructions, like vfmadd231pd
.
Intel CPUs have HW perf counters for events like fp_arith_inst_retired.256b_packed_double
, so you can use those to count FLOPs instead. They actually count FMA as 2 events. So if you have an Intel CPU that can run your code natively, you can do that instead with perf stat -e -e fp_arith_inst_retired.256b_packed_double,fp_arith_inst_retired.128b_packed_double,fp_arith_inst_retired.scalar_double
. (And/or the events for single-precision.)
But there aren't events for most other specific kinds of instructions, only FP math.
This is all Intel stuff; IDK what AMD has, or any stuff for ISAs other than x86. These are just the tools I've heard of; I'm sure there are lots of things I'm leaving out.