I want to repeatedly execute a function in Python every 60 seconds forever (just like an NSTimer in Objective C). This code will run as a daemon and is effectively like call
I ended up using the schedule module. The API is nice.
import schedule
import time
def job():
print("I'm working...")
schedule.every(10).minutes.do(job)
schedule.every().hour.do(job)
schedule.every().day.at("10:30").do(job)
schedule.every(5).to(10).minutes.do(job)
schedule.every().monday.do(job)
schedule.every().wednesday.at("13:15").do(job)
schedule.every().minute.at(":17").do(job)
while True:
schedule.run_pending()
time.sleep(1)
If your program doesn't have a event loop already, use the sched module, which implements a general purpose event scheduler.
import sched, time
s = sched.scheduler(time.time, time.sleep)
def do_something(sc):
print("Doing stuff...")
# do your stuff
s.enter(60, 1, do_something, (sc,))
s.enter(60, 1, do_something, (s,))
s.run()
If you're already using an event loop library like asyncio
, trio
, tkinter
, PyQt5
, gobject
, kivy
, and many others - just schedule the task using your existing event loop library's methods, instead.
I use Tkinter after() method, which doesn't "steal the game" (like the sched module that was presented earlier), i.e. it allows other things to run in parallel:
import Tkinter
def do_something1():
global n1
n1 += 1
if n1 == 6: # (Optional condition)
print "* do_something1() is done *"; return
# Do your stuff here
# ...
print "do_something1() "+str(n1)
tk.after(1000, do_something1)
def do_something2():
global n2
n2 += 1
if n2 == 6: # (Optional condition)
print "* do_something2() is done *"; return
# Do your stuff here
# ...
print "do_something2() "+str(n2)
tk.after(500, do_something2)
tk = Tkinter.Tk();
n1 = 0; n2 = 0
do_something1()
do_something2()
tk.mainloop()
do_something1()
and do_something2()
can run in parallel and in whatever interval speed. Here, the 2nd one will be executed twice as fast.Note also that I have used a simple counter as a condition to terminate either function. You can use whatever other contition you like or none if you what a function to run until the program terminates (e.g. a clock).
If you want a non-blocking way to execute your function periodically, instead of a blocking infinite loop I'd use a threaded timer. This way your code can keep running and perform other tasks and still have your function called every n seconds. I use this technique a lot for printing progress info on long, CPU/Disk/Network intensive tasks.
Here's the code I've posted in a similar question, with start() and stop() control:
from threading import Timer
class RepeatedTimer(object):
def __init__(self, interval, function, *args, **kwargs):
self._timer = None
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.is_running = False
self.start()
def _run(self):
self.is_running = False
self.start()
self.function(*self.args, **self.kwargs)
def start(self):
if not self.is_running:
self._timer = Timer(self.interval, self._run)
self._timer.start()
self.is_running = True
def stop(self):
self._timer.cancel()
self.is_running = False
Usage:
from time import sleep
def hello(name):
print "Hello %s!" % name
print "starting..."
rt = RepeatedTimer(1, hello, "World") # it auto-starts, no need of rt.start()
try:
sleep(5) # your long-running job goes here...
finally:
rt.stop() # better in a try/finally block to make sure the program ends!
Features:
start()
and stop()
are safe to call multiple times even if the timer has already started/stoppedinterval
anytime, it will be effective after next run. Same for args
, kwargs
and even function
!You might want to consider Twisted which is a Python networking library that implements the Reactor Pattern.
from twisted.internet import task, reactor
timeout = 60.0 # Sixty seconds
def doWork():
#do work here
pass
l = task.LoopingCall(doWork)
l.start(timeout) # call every sixty seconds
reactor.run()
While "while True: sleep(60)" will probably work Twisted probably already implements many of the features that you will eventually need (daemonization, logging or exception handling as pointed out by bobince) and will probably be a more robust solution
This seems much simpler than accepted solution - does it have shortcomings I'm not considering? Came here looking for some dead-simple copy pasta.
import threading, time
def print_every_n_seconds(n=2):
while True:
print(time.ctime())
time.sleep(n)
thread = threading.Thread(target=print_every_n_seconds, daemon=True)
thread.start()
Which asynchronously outputs.
#Tue Oct 16 17:29:40 2018
#Tue Oct 16 17:29:42 2018
#Tue Oct 16 17:29:44 2018
This does have drift. If the task being run takes appreciable amount of time, then the interval becomes 2 seconds + task time, so if you need precise scheduling then this is not for you.**
Note the daemon=True
flag means this thread won't block the app from shutting down. For example, had issue where pytest
would hang indefinitely after running tests waiting for this thead to cease.