Get 95% confidence interval with glm(..) in R

后端 未结 2 1820
不思量自难忘°
不思量自难忘° 2021-02-19 20:38

Here are some data

dat = data.frame(y = c(9,7,7,7,5,6,4,6,3,5,1,5), x = c(1,1,2,2,3,3,4,4,5,5,6,6), color = rep(c(\'a\',\'b\'),6))

and the plot

相关标签:
2条回答
  • 2021-02-19 20:54

    use confint

    
    mod = glm(y~x/color, data=dat)
    summary(mod)
    Call:
    glm(formula = y ~ x/color, data = dat)
    
    Deviance Residuals: 
         Min        1Q    Median        3Q       Max  
    -1.11722  -0.40952  -0.04908   0.32674   1.35531  
    
    Coefficients:
                Estimate Std. Error t value     Pr(>|t|)
    (Intercept)   8.8667     0.4782  18.540 0.0000000177
    x            -1.2220     0.1341  -9.113 0.0000077075
    x:colorb      0.4725     0.1077   4.387      0.00175
    
    (Dispersion parameter for gaussian family taken to be 0.5277981)
    
        Null deviance: 48.9167  on 11  degrees of freedom
    Residual deviance:  4.7502  on  9  degrees of freedom
    AIC: 30.934
    
    Number of Fisher Scoring iterations: 2
    
    confint(mod)
    Waiting for profiling to be done...
                     2.5 %     97.5 %
    (Intercept)  7.9293355  9.8039978
    x           -1.4847882 -0.9591679
    x:colorb     0.2614333  0.6836217
    
    0 讨论(0)
  • 2021-02-19 21:09

    @alex's approach will get you the confidence limits, but be careful about interpretation. Since glm is fundamentally a non-liner model, the coefficients usually have large covariance. You should at least take a look at the 95% confidence ellipse.

    mod <- glm(y~x/color, data=dat)
    require(ellipse)
    conf.ellipse <- data.frame(ellipse(mod,which=c(2,3)))
    ggplot(conf.ellipse, aes(x=x,y=x.colorb)) + 
      geom_path()+
      geom_point(x=mod$coefficient[2],y=mod$coefficient[3], size=5, color="red")
    

    Produces this, which is the 95% confidence ellipse for x and the interaction term.

    Notice how the confidence limits produced by confint(...) are well with the ellipse. In that sense, the ellipse provides a more conservative estimate of the confidence limits.

    0 讨论(0)
提交回复
热议问题