I tested PyCharm and IDLE, both of them print the 7th number to a second line.
Input:
import numpy as np
a=np.array([ 1.02090721, 1.02763091, 1.038993
Type cast to a list when printing.
import numpy as np
a=np.array([ 1.02090721, 1.02763091, 1.03899317, 1.00630297, 1.00127454, 0.89916715, 1.04486896])
print(list(a))
This will print on a single line.
If you want a customized version of str(a)
, the answer is array_str:
>>> print(a)
[ 1.02090721 1.02763091 1.03899317 1.00630297 1.00127454 0.89916715
1.04486896]
>>> str(a)
'[1.02090721 1.02763091 1.03899317 1.00630297 1.00127454 0.89916715\n 1.04486896]'
>>> np.array_str(a, max_line_width=np.inf)
'[1.02090721 1.02763091 1.03899317 1.00630297 1.00127454 0.89916715 1.04486896]'
>>> print(np.array_str(a, max_line_width=np.inf)
[1.02090721 1.02763091 1.03899317 1.00630297 1.00127454 0.89916715 1.04486896]
If you want to change the printout of every array, not just here, see set_printoptions.
There is np.set_printoptions which allows to modify the "line-width" of the printed NumPy array:
>>> import numpy as np
>>> np.set_printoptions(linewidth=np.inf)
>>> a = np.array([ 1.02090721, 1.02763091, 1.03899317, 1.00630297, 1.00127454, 0.89916715, 1.04486896])
>>> print(a)
[1.02090721 1.02763091 1.03899317 1.00630297 1.00127454 0.89916715 1.04486896]
It will print all 1D arrays in one line. It won't work that easily with multidimensional arrays.
Similar to here you could use a contextmanager if you just want to temporarily change that:
import numpy as np
from contextlib import contextmanager
@contextmanager
def print_array_on_one_line():
oldoptions = np.get_printoptions()
np.set_printoptions(linewidth=np.inf)
yield
np.set_printoptions(**oldoptions)
Then you use it like this (fresh interpreter session assumed):
>>> import numpy as np
>>> np.random.random(10) # default
[0.12854047 0.35702647 0.61189795 0.43945279 0.04606867 0.83215714
0.4274313 0.6213961 0.29540808 0.13134124]
>>> with print_array_on_one_line(): # in this block it will be in one line
... print(np.random.random(10))
[0.86671089 0.68990916 0.97760075 0.51284228 0.86199111 0.90252942 0.0689861 0.18049253 0.78477971 0.85592009]
>>> np.random.random(10) # reset
[0.65625313 0.58415921 0.17207238 0.12483019 0.59113892 0.19527236
0.20263972 0.30875768 0.50692189 0.02021453]