I want a constexpr
value (i.e. a compile-time constant) computed from a constexpr
function. And I want both of these scoped
#include <iostream>
class C1
{
public:
constexpr static int foo(constexpr int x)
{
return x + 1;
}
static constexpr int bar;
};
constexpr int C1::bar = C1::foo(sizeof(int));
int main()
{
std::cout << C1::bar << std::endl;
return 0;
}
Such initialization works well but only on clang
1) Ilya's example should be invalid code based on the fact that the static constexpr data member bar is initialized out-of-line violating the following statement in the standard:
9.4.2 [class.static.data] p3: ... A static data member of literal type can be declared in the class definition with the constexpr specifier; if so, its declaration shall specify a brace-or-equal-initializer in which every initializer-clause that is an assignment-expression is a constant expression.
2) The code in MvG's question:
class C1 {
constexpr static int foo(int x) { return x + 1; }
constexpr static int bar = foo(sizeof(int));
};
is valid as far as I see and intuitively one would expect it to work because the static member foo(int) is defined by the time processing of bar starts (assuming top-down processing). Some facts:
an invocation of an undefined constexpr function or an undefined constexpr constructor outside the definition of a constexpr function or a constexpr constructor;
class C1
{
constexpr static int foo() { return bar; }
constexpr static int bar = foo();
};
looks invalid but for different reasons and not simply because foo is called in the initializer of bar. The logic goes as follows:
but by bullet 9 in (5.19 p2) which bar does not satisfy because it is not yet initialized:
- an lvalue-to-rvalue conversion (4.1) unless it is applied to:
- a glvalue of integral or enumeration type that refers to a non-volatile const object with a preceding initialization, initialized with a constant expression.
hence the lvalue-to-rvalue conversion of bar does not yield a constant expression failing the requirement in (9.4.2 p3).
an invocation of a constexpr function with arguments that, when substituted by function invocation substitution (7.1.5), do not produce a constant expression
The Standard requires (section 9.4.2):
A
static
data member of literal type can be declared in the class definition with theconstexpr
specifier; if so, its declaration shall specify a brace-or-equal-initializer in which every initializer-clause that is an assignment-expression is a constant expression.
In your "second attempt" and the code in Ilya's answer, the declaration doesn't have a brace-or-equal-initializer.
Your first code is correct. It's unfortunate that gcc 4.6 isn't accepting it, and I don't know anywhere to conveniently try 4.7.x (e.g. ideone.com is still stuck on gcc 4.5).
This isn't possible, because unfortunately the Standard precludes initializing a static constexpr
data member in any context where the class is complete. The special rule for brace-or-equal-initializers in 9.2p2 only applies to non-static data members, but this one is static.
The most likely reason for this is that constexpr
variables have to be available as compile-time constant expressions from inside the bodies of member functions, so the variable initializers are completely defined before the function bodies -- which means the function is still incomplete (undefined) in the context of the initializer, and then this rule kicks in, making the expression not be a constant expression:
an invocation of an undefined
constexpr
function or an undefinedconstexpr
constructor outside the definition of aconstexpr
function or aconstexpr
constructor;
Consider:
class C1
{
constexpr static int foo(int x) { return x + bar; }
constexpr static int bar = foo(sizeof(int));
};
Probably, the problem here is related to the order of declaration/definitions in a class. As you all know, you can use any member even before it is declared/defined in a class.
When you define de constexpr value in the class, the compiler does not have the constexpr function available to be used because it is inside the class.
Perhaps, Philip answer, related to this idea, is a good point to understand the question.
Note this code which compiles without problems:
constexpr int fooext(int x) { return x + 1; }
struct C1 {
constexpr static int foo(int x) { return x + 1; }
constexpr static int bar = fooext(5);
};
constexpr static int barext = C1::foo(5);