pyLDAvis visualization of pyspark generated LDA model

后端 未结 2 933
旧时难觅i
旧时难觅i 2021-02-19 10:55

Does anyone have an example of data visualization of an LDA model trained using the PySpark library (specifically using pyLDAvis)? I\'ve seen a lot of examples for GenSim and ot

相关标签:
2条回答
  • 2021-02-19 11:46

    I have somehow managed to fit the output of pyspark to pyLDAvis.
    The following code needs a little cleaning but it works.

    from pyspark.ml.feature import StopWordsRemover,Tokenizer, RegexTokenizer, CountVectorizer, IDF
    from pyspark.sql.functions import udf, col, size, explode, regexp_replace, trim, lower, lit
    from pyspark.sql.types import ArrayType, StringType, DoubleType, IntegerType, LongType
    from pyspark.ml.clustering import LDA
    import pyLDAvis
    
    
    def format_data_to_pyldavis(df_filtered, count_vectorizer, transformed, lda_model):
        xxx = df_filtered.select((explode(df_filtered.words_filtered)).alias("words")).groupby("words").count()
        word_counts = {r['words']:r['count'] for r in xxx.collect()}
        word_counts = [word_counts[w] for w in count_vectorizer.vocabulary]
    
    
        data = {'topic_term_dists': np.array(lda_model.topicsMatrix().toArray()).T, 
                'doc_topic_dists': np.array([x.toArray() for x in transformed.select(["topicDistribution"]).toPandas()['topicDistribution']]),
                'doc_lengths': [r[0] for r in df_filtered.select(size(df_filtered.words_filtered)).collect()],
                'vocab': count_vectorizer.vocabulary,
                'term_frequency': word_counts}
    
        return data
    
    def filter_bad_docs(data):
        bad = 0
        doc_topic_dists_filtrado = []
        doc_lengths_filtrado = []
    
        for x,y in zip(data['doc_topic_dists'], data['doc_lengths']):
            if np.sum(x)==0:
                bad+=1
            elif np.sum(x) != 1:
                bad+=1
            elif np.isnan(x).any():
                bad+=1
            else:
                doc_topic_dists_filtrado.append(x)
                doc_lengths_filtrado.append(y)
    
        data['doc_topic_dists'] = doc_topic_dists_filtrado
        data['doc_lengths'] = doc_lengths_filtrado
    
    # This is the only part that you have to implement:
    create a Spark Dataframe named df_filtered and it has the list of raw words.
    It can be the output of StopWordsRemover
    
    # WORD COUNT
    count_vectorizer = CountVectorizer(inputCol="words_filtered", outputCol="features", minDF=0.05, maxDF=0.5)
    count_vectorizer = count_vectorizer.fit(df_filtered)
    df_counted = count_vectorizer.transform(df_filtered)
    
    # TF-IDF
    idf = IDF(inputCol="features", outputCol="features_tfidf")
    idf_model = idf.fit(df_counted)
    df_tfidf = idf_model.transform(df_counted)
    
    # LDA
    lda = LDA(k=2, maxIter=20, featuresCol='features_tfidf')
    lda_model = lda.fit(df_tfidf)
    transformed = lda_model.transform(df_tfidf)
    
    # FORMAT DATA AND PASS IT TO PYLDAVIS
    data = format_data_to_pyldavis(df_filtered, count_vectorizer, transformed, lda_model)
    filter_bad_docs(data) # this is, because for some reason some docs apears with 0 value in all the vectors, or the norm is not 1, so I filter those docs.
    py_lda_prepared_data = pyLDAvis.prepare(**data)
    pyLDAvis.display(py_lda_prepared_data)
    
    0 讨论(0)
  • 2021-02-19 11:47

    I haven't used pyLDAvis for the visualization of pyspark's LDA but here is an example how to use the prepare for sklearn without the special sklearn.prepare.

    Here a link to the source code for pyLDAvis.prepare: https://github.com/bmabey/pyLDAvis/blob/master/pyLDAvis/_prepare.py

    def prepare(topic_term_dists, doc_topic_dists, doc_lengths, vocab, term_frequency):
       """Transforms the topic model distributions and related corpus data into
       the data structures needed for the visualization.
        Parameters
        ----------
        topic_term_dists : array-like, shape (n_topics, n_terms)
            Matrix of topic-term probabilities. Where n_terms is len(vocab).
        doc_topic_dists : array-like, shape (n_docs, n_topics)
            Matrix of document-topic probabilities.
        doc_lengths : array-like, shape n_docs
            The length of each document, i.e. the number of words in each document.
            The order of the numbers should be consistent with the ordering of the
            docs in doc_topic_dists.
        vocab : array-like, shape n_terms
            List of all the words in the corpus used to train the model.
        term_frequency : array-like, shape n_terms
            The count of each particular term over the entire corpus. The ordering
            of these counts should correspond with `vocab` and topic_term_dists.
    

    Example for sklearn.decomposition.LatentDirichletAllocation:

    tfidf_vectorizer = TfidfVectorizer(max_df=0.95)
    tfidf = tfidf_vectorizer.fit_transform(data)
    lda = LatentDirichletAllocation(n_components=10)
    lda.fit(tfidf)
    topic_term_dists = lda.components_ / lda.components_.sum(axis=1)[:, None]
    doc_lengths = tfidf.sum(axis=1).getA1()
    term_frequency = tfidf.sum(axis=0).getA1()
    lda_doc_topic_dists = lda.transform(tfidf)
    doc_topic_dists = lda_doc_topic_dists / lda_doc_topic_dists.sum(axis=1)[:, None]
    vocab = tfidf_vectorizer.get_feature_names()
    lda_pyldavis = pyLDAvis.prepare(topic_term_dists, doc_topic_dists, doc_lengths, vocab, term_frequency)
    pyLDAvis.display(lda_pyldavis)
    
    0 讨论(0)
提交回复
热议问题