I\'m calculating a coskew matrix and wanted to double check my calculation with pandas built in skew
method. I could not reconcile how pandas performing the calcul
I found scipy.stats.skew with parameter bias=False
return equal output, so I think in pandas skew
is bias=False
by default:
bias : bool
If False, then the calculations are corrected for statistical bias.
import pandas as pd
import scipy.stats.stats as stats
series = pd.Series(
{0: -0.051917457635120283,
1: -0.070071606515280632,
2: -0.11204865874074735,
3: -0.14679988245503134,
4: -0.088062467095565145,
5: 0.17579741198527793,
6: -0.10765856028420773,
7: -0.11971470229167547,
8: -0.15169210769159247,
9: -0.038616800990881606,
10: 0.16988162977411481,
11: 0.092999418364443032}
)
print (series.skew())
1.11196375867
print (stats.skew(series, bias=False))
1.1119637586658944
Not sure for 100%, but I think I find it in code
EDIT (piRSquared)
From scipy skew code
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
np.place(vals, can_correct, nval)
return vals
The adjustment was (n * (n - 1)) ** 0.5 / (n - 2)
and not (n * (n - 1)) ** 0.5 / (n - 1)