Here\'s the question:
Given a list of items in Python, how would I go by to get all the possible combinations of the items?
There are several similar questio
Use itertools.permutations:
>>> import itertools
>>> stuff = [1, 2, 3]
>>> for L in range(0, len(stuff)+1):
for subset in itertools.permutations(stuff, L):
print(subset)
...
()
(1,)
(2,)
(3,)
(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
....
help on itertools.permutations
:
permutations(iterable[, r]) --> permutations object
Return successive r-length permutations of elements in the iterable.
permutations(range(3), 2) --> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1)
>>>
I assume you want all possible combinations as 'sets' of values. Here is a piece of code that I wrote that might help give you an idea:
def getAllCombinations(object_list):
uniq_objs = set(object_list)
combinations = []
for obj in uniq_objs:
for i in range(0,len(combinations)):
combinations.append(combinations[i].union([obj]))
combinations.append(set([obj]))
return combinations
Here is a sample:
combinations = getAllCombinations([20,10,30])
combinations.sort(key = lambda s: len(s))
print combinations
... [set([10]), set([20]), set([30]), set([10, 20]), set([10, 30]), set([20, 30]), set([10, 20, 30])]
I think this has n! time complexity, so be careful. This works but may not be most efficient
Are you looking for itertools.permutations instead?
From help(itertools.permutations)
,
Help on class permutations in module itertools:
class permutations(__builtin__.object)
| permutations(iterable[, r]) --> permutations object
|
| Return successive r-length permutations of elements in the iterable.
|
| permutations(range(3), 2) --> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1)
Sample Code :
>>> from itertools import permutations
>>> stuff = [1, 2, 3]
>>> for i in range(0, len(stuff)+1):
for subset in permutations(stuff, i):
print(subset)
()
(1,)
(2,)
(3,)
(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
From Wikipedia, the difference between permutations and combinations :
Permutation :
Informally, a permutation of a set of objects is an arrangement of those objects into a particular order. For example, there are six permutations of the set {1,2,3}, namely (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1).
Combination :
In mathematics a combination is a way of selecting several things out of a larger group, where (unlike permutations) order does not matter.
just thought i'd put this out there since i couldn't fine EVERY possible outcome and keeping in mind i only have the rawest most basic of knowledge when it comes to python and there's probably a much more elegant solution...(also excuse the poor variable names
testing = [1, 2, 3]
testing2= [0]
n = -1
def testingSomethingElse(number):
try:
testing2[0:len(testing2)] == testing[0]
n = -1
testing2[number] += 1
except IndexError:
testing2.append(testing[0])
while True:
n += 1
testing2[0] = testing[n]
print(testing2)
if testing2[0] == testing[-1]:
try:
n = -1
testing2[1] += 1
except IndexError:
testing2.append(testing[0])
for i in range(len(testing2)):
if testing2[i] == 4:
testingSomethingElse(i+1)
testing2[i] = testing[0]
i got away with == 4 because i'm working with integers but you may have to modify that accordingly...
First lets define a translation between an indicator vector of 0
and 1
s and a sub-list (1
if the item is in the sublist)
def indicators2sublist(indicators,arr):
return [item for item,indicator in zip(arr,indicators) if int(indicator)==1]
Next, Well define a mapping from a number between 0
and 2^n-1
to the its binary vector representation (using string's format
function) :
def bin(n,sz):
return ('{d:0'+str(sz)+'b}').format(d=n)
All we have left to do, is to iterate all the possible numbers, and call indicators2sublist
def all_sublists(arr):
sz=len(arr)
for n in xrange(0,2**sz):
b=bin(n,sz)
yield indicators2sublist(b,arr)
itertools.permutations
is going to be what you want. By mathematical definition, order does not matter for combinations
, meaning (1,2)
is considered identical to (2,1)
. Whereas with permutations
, each distinct ordering counts as a unique permutation, so (1,2)
and (2,1)
are completely different.